International Journal of Scientific & Technology Research

Home About Us Scope Editorial Board Blog/Latest News Contact Us
10th percentile
Powered by  Scopus
Scopus coverage:
Nov 2018 to May 2020


IJSTR >> Volume 7 - Issue 1, January 2017 Edition

International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616

Impact Of Different Nitrogen Concentrations On Biomass Productivity, Lipid Content And Target Fatty Acids Within Chlorella Sp. And Desmodesmus Quadricaudatus To Enhance Biodiesel Production

[Full Text]



Marwa G. Saad, Hesham M. Shafik, Laila Mekki, Radwa El-Kholy



Biodiesel, Biomass productivity, Microalgae, Nitrate, Target Fatty Acids, Abbreviations: TFAs; Target Fatty Acids, CN; Cetane Number, SV; Saponification Value, DCW; Dry Cell Weight, CFPP; Cold filter plugging point, Gas Chromatography; GC.



At constant time and temperature, pure cultures of Chlorella sp. and Desmodesmus quadriquadatus studied under different nitrate concentrations of 375, 186, 94, 47, 23 and 0.0 mgl-1 to enhance biodiesel production. Nitrate reduced gradually from concentration to another each 7-day cultures. Biomass for all cultures estimated as chlorophyll-a (µgl-1) and dry cell weight (gl-1). For all 7 days` cultures, biomass productivity (mgl-1d-1), lipid content (% biomass) and target fatty acids (%TFAs) for biodiesel production were detected. Because biodiesel quality and quantity affected by growth and lipid content; nitrate concentrations of 23 and 375 mgl-1 were suitable to cultivate Chlorella and D. quadricaudatus for production of biodiesel where Chlorella results` were; biomass productivity; 263mgl-1, lipid content; 87.49%DCW and TFAs; 42.71% while at 375 mgl-1 NaNO3 D. quadricaudatus results` were; biomass productivity; 290.3mgl-1, lipid content; 57.98%DCW and TFAs; 65.39%. Biodiesel samples produced from both species accepted for both ASTM and EN standards. In this paper, the highest percent in lipid content and biomass productivity for Chlorella sp. and Desmodesmus quadricaudatus comparing with other literature recorded. In addition, this paper considered the time as an agent for biodiesel production, that no other paper had considered.



[1] Tyagi, O.S.; Atray, N.; Kumar, B. and Datta, A. Production, Characterization and Development of Standards for Biodiesel - A Review. JMSI. 2010; 25: 197-218.

[2] Huo, H.; Wang, M.; Bloyd, C. and Putsche, V.. Life-Cycle Assessment of Energy and Greenhouse Gas Effects of Soybean-Derived Biodiesel and Renewable Fuels, ANL/ESD/08-2, Argonne National Laboratory, Illinois. (2008)

[3] (http://www.udcinc.org/Bio%20Fuels.html. Accessed 20 Jun 2014.

[4] Singh A., Pant D., Olsen S.I., Nigam P.S. Energy Education Science and Technology Part A: Energy Science and Research. 2012; 29(1): 687-700.

[5] Sheehan J., Dunahay T., Benemann J., Roessler P.. A look back at the U.S. Department of Energy’s Aquatic Species Program: Biodiesel from algae. U.S. Report NREL/TP-580-24190. Golden CO: National Renewable Energy Laboratory. 1998.

[6] Bajhaiya A. K., Mandotra S. K., Suseela M.R., Toppo K., Ranade S. Algal Biodiesel: The Next Generation Biofuel For India. Asian J. Exp. Biol. Sci. 2010; 1 : 728- 739.

[7] Borowitzka M.A. Fats, oils and hydrocarbons. In: Borowitzka MA, Borowitzka LJ, editors. Micro-algal biotechnology. Cambridge: Cambridge University Press. 1988.

[8] Hempel N., Petrick I., Behrendt F.Biomass productivity and productivity of fatty acids and amino acids of microalgae strains as key characteristics of suitability for biodiesel production. J Appl Phycol. 2012; 24:1407–1418.

[9] Hidayat S.Exploration of Indonesia’s Biodiesel Producing Microalgae As Sustainable Energy Source, Alcoa Foundation’s Conservation and sustainability Fellowship Program, Sustainability Institute: IUCN . 2008.

[10] Huang, G.; Chen, F.; Wei, D.; Zhang, X.; Chen, G. Biodiesel production by microalgal biotechnology. Appl. Energy 2010, 87, 38–46

[11] Singh, B.; Guldhe, A.; Rawat, I.; Bux, F. Towards a sustainable approach for development of biodiesel from plant and microalgae. Renew. Sustain. Energy Rev. 2014, 29, 216–245.

[12] Goto, S.; Oguma, M.; Chollacoop, N. Biodiesel fuel quality. Benchmarking of biodiesel fuel standardization in East Asia Working Group. In EAS-ERIA Biodiesel Fuel Trade Handbook; ERIA: Jakarta, Indonesia, 2010; pp. 27–62

[13] Gopinath, A.; Puhan, S.; Nagarajan, G. Effect of biodiesel structural configuration on its ignition quality. Energy Environ. 2010, 1, 295–306

[14] Knothe, G. Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process. Technol. 2005, 86, 1059–1070

[15] Griffiths, M., & Harrison, S. (2009). Journal of Applied Phycology, 21, 493–507.

[16] Gülyurt, M. Ö., Özçimen, D., and Inan, B. Biodiesel Production from Chlorella protothecoides Oil by Microwave-Assisted Transesterification, Int. J. Mol. Sci. 2016, 17, 579; doi:10.3390/ijms17040579

[17] Wang W, Han F, Li Y et al (2014) Medium screening and optimization for photoautotrophic culture of Chlorella pyrenoidosa with high lipid productivity indoors and outdoors. Bioresour Technol 170:395–403. doi:10.1016/j.biortech.2014.08.030

[18] Lin T-S, Wu J-Y (2015) Effect of carbon sources on growth and lipid accumulation of newly isolated microalgae cultured under mixotrophic condition. Bioresour Technol 184:100–107. doi:10.1016/j.biortech.2014.11.005

[19] Chisti Y.Biodiesel from microalgae, Research review paper. Biotechnol. Adv. 2007; 25:294–306.

[20] Beyerinck M.W. Culturversuche mit Zoochlorellen, Lichenengonidien und anderen niederen Algen. Botanische Zeitung. 1890; 47 : 725-739, 741-754, 757-768, 781-785.

[21] Zhou X., Xia L., Ge H., Zhang D., Hu C. Feasibility of biodiesel production by microalgae Chlorella sp. (FACHB-1748) under outdoor conditions, Bioresource Technol. 2013; doi: 10.1016/j.biortech.2013.03.169.

[22] Dayananda C., Sarada R., Kumar V., Ravishankar G.A.Isolation, characterization of hydrocarbon producing green microalgae Botryococcus braunii from Indian fresh-water bodies. Electron J Biotechnol. 2007;10:78-91.

[23] An S.S., Fried T., Hegewald E. Phylogenetic relationships of Scenedesmus and Scenedesmus-like coccoid green algae as inferred from IT-2 rDNA sequence comparisons. Plant Biol. 1999; 1 : 418-428.

[24] Garofalo R .Algae and aquatic biomass for a sustainable production of 2nd generation biofuels. (AquaFUELs). Proposal No. AQUAFUEL FP7 - 241301-2. Coordination Action FP7-ENERGY-2009-1. Aquafuels Project, European Biodiesel Board (EBB), Brussels. 2011. URL: http://www.aquafuels.eu/attach-ments/079 Merged%20reports%20-Taxonomy Biology%20&%20Biotechnology.pdf

[25] Feng, X.; Walker, T.H.; Bridges, W.C.; Thornton, C.; Gopalakrishnan, K. Biomass and lipid production of Chlorella protothecoides under heterotrophic cultivation on a mixed waste substrate of brewer fermentation and crude glycerol. Bioresour. Technol. 2014, 166, 17–23.

[26] Illman A.M., Scragg A.H., Shales S.W. Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb Tech. 2000; 27:631–635.

[27] Liu Z-Y, Wang G-C, Zhou B-C (2008) Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour Technol 99:4717–4722

[28] Mandal, S., & Mallick, N. Microalga Scenedesmus obliquus as a potential source for biodiesel production, Appl Microbiol Biotechnol (2009) 84:281–291 DOI 10.1007/s00253-009-1935-6

[29] Ho, S., Chen, W., & Chang, J. (2010). Bioresource Technology, 101, 8725–8730

[30] Shafik H.M., Saad M.G., El-Serehy H.A.. Impact of Nitrogen Regime on Fatty Acid Profiles of Desmodesmus Quadricaudatus and Chlorella sp. and Ability to Produce Biofuel. Acta Bot. Hung. 2015; doi: 10.1556/ABot.57.2015.1–2.X

[31] Iwamura T, Nagai, H. , Ishimura, S. Improved methods for determining contents of chlorophyll, protein, ribonucleic acid and deoxyribonucleic acid in planktonic populations. Internationale Revue Gesamten Hydrobiologie. 1970;55:131–147.

[32] Levasseur M., Thompson P. A., Harrison P. J. (1993). Physiological acclimation of marine phytoplankton to different nitrogen sources. J. Phycol. 29, 587–595 10.1111/j.0022-3646.1993.00587.

[33] Rai, L.C., Mallick, N., Singh, J.B. and Kumar, H.D. (1991) Physiological and biochemical characteristics of a copper tolerant and a wild type strain of Anabaena doliolum under copper stress. J Plant Physiol 138, 68–74.

[34] Li Y., Horsman M., Wang B., Wu N., Lan C.Q.Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol. 2008; doi: 10.1007/s00253-008-1681-1

[35] Nashima K., Palanisamy A. Biodiesel Production by Chlorella sp. and Oscillatoria sp., IJPI’s. 2012; 2 : 10.

[36] Hossain A.B.M., Salleh A., Biodiesel Fuel Production from Algae as Renewable Energy. Am. J. Bioch. & Biotech. 2008; 4:250-254.

[37] Luddy F.E., Beerford R.A., Riemenschneider R.W.Direct conversion of lipid component to their fatty acid methyl ester. J. Am. Oil Chem. Soc. 1960; 37:447-451.

[38] Cox H.E., Pearson D. The chemical analysis of foods, chemical publishing Co. Ino. New York. 1962.

[39] Horowitz M.Official methods of AOAC an Association of Official Analytical Chemists, 12th ed. Washington. 1975.

[40] Demirabas A.Biofuel sources, Biofuel Policy, Biofuel Economy and Global Biofuel Projection. J. Ener. Conver. Manag. 2008; 49:2106 – 2116.

[41] Shafik H.M. Growth, Nutrient uptake and competition of algae of Lake Balaton in flow-through cultures, Unpublished dissertation in partial fulfilment of the requirements for the degree of Doctor of Philosophy, Hungarian Academy of Sciences.Hungary. 1991.

[42] Jaimes-Duarte, D.L.; Soler-Mendoza, O.W.; Velasco-Mendoza, J.; Muñoz-Peñaloza, Y. & Urbina-Suárez, N.A. (2012). Characterization Chlorophytas Microalgae with Potential in The Production of Lipids for Biofuels, CT&F - Ciencia, Tecnología y Futuro. 5: 93-102.

[43] Kaur, S.; Sarkar, M.; Srivastava, R.B.; Gogoil, H.K. & Kalita, M.C. (2012). Fatty acid profiling and molecular characterization of some freshwater microalgae from India with potential for biodiesel production. New Biotechnology. 29:332-44

[44] Rodolfi, L.; Zittelli, G.C.; Bassi, N.; Padovani, G.; Biondi, N.; Bonini, G. & Tredici, M.R. (2009). Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng, 102:100-112.

[45] Lee S.J., Go S., Jeong G.T., Kim S.K. Oil production from five marine microalgae for the production of biodiesel. Biotechnol. Bioprocess Eng. 2011; 16:561-566.

[46] Hu G., Fan Y., Zhang L., Yuan C., Wang J., et al. Enhanced Lipid Productivity and Photosynthesis Efficiency in a Desmodesmus sp. Mutant Induced by Heavy Carbon Ions. PLoS ONE. 2013; doi: 10.1371/journal.pone.0060700.

[47] Tubino, M. & Aricetti, J. A. (2011). A green method for determination of acid number of biodiesel, Journal of Brazilian Chemical Society, 22, 1009-1014.