IJSTR

International Journal of Scientific & Technology Research

Home About Us Scope Editorial Board Blog/Latest News Contact Us
0.2
2019CiteScore
 
10th percentile
Powered by  Scopus
Scopus coverage:
Nov 2018 to May 2020

CALL FOR PAPERS
AUTHORS
DOWNLOADS
CONTACT

IJSTR >> Volume 4 - Issue 12, December 2015 Edition



International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616



Micro RNA Mimics And Antagonists

[Full Text]

 

AUTHOR(S)

Nabajit Das, Naveen Tripathi, Sukant Khurana

 

KEYWORDS

Index Terms: antagonists, clinical trial, diseases, drugs, therapeutics, gene, mimics, miRNA.

 

ABSTRACT

Abstract: Gene regulation is vital for life and it involves plethora of mechanisms, including microRNA (miRNA) based RNA inhibition. Messenger RNA (mRNA) inhibition by miRNA requires less sequence specificity than inhibition by small inhibitory RNA (siRNA) and has different set of enzymes required for processing. The regulation and richness of RNA inhibition and specifically miRNA action is just beginning to be studied, while much work has undergone in the study of synthesis and processing of miRNA. More than 1800 unique human miRNAs have been computationally predicted and several have been experimentally validated. Given their ability to act as sequence specific regulators of the transcriptome, miRNAs have potential in therapeutics and diagnostics. We specifically focus on synthesis of current therapeutic applications of miRNA. We discuss the two different strategies in miRNA treatment: mimics and antagonists, and bring forward the promises and perils of miRNA therapy in its journey from lab to medicine.

 

REFERENCES

[1] Marder E, Taylor AL: Multiple models to capture the variability in biological neurons and networks.Nat Neurosci 2011, 14:133–138.

[2] Tobin A-E, Cruz-Bermúdez ND, Marder E, Schulz DJ: Correlations in Ion Channel mRNA in Rhythmically Active Neurons. PLoS ONE 2009, 4:e6742.

[3] Taylor AL, Goaillard J-M, Marder E: How multiple conductances determine electrophysiological properties in a multicompartment model.J Neurosci 2009, 29:5573–5586.

[4] Doench JG, Petersen CP, Sharp PA: siRNAs can function as miRNAs.Genes Dev 2003, 17:438–442.

[5] Lee RC, Feinbaum RL, Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14.Cell 1993, 75:843–854.

[6] Kozomara A, Griffiths-Jones S: miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 2013, 42(Database issue):D68–D73.

[7] Qureshi A, Thakur N, Monga I, Thakur A, Kumar M: VIRmiRNA: a comprehensive resource for experimentally validated viral miRNAs and their targets.Database: the journal of biological databases and curation 2014, bau:1–10.

[8] Zhang Z, Yu J, Li D, Zhang Z, Liu F, Zhou X, Wang T, Ling Y, Su Z: PMRD: plant microRNA database.Nucleic Acids Res 2009, 38(Database issue):D806–D813.

[9] Berezikov E, Cuppen E, Plasterk RHA: Approaches to microRNA discovery. Nature Genetics 2006, 38:S2–S7.

[10] Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN: MicroRNA genes are transcribed by RNA polymerase II. EMBO J 2004, 23:4051–4060.

[11] Pillai RS: Inhibition of Translational Initiation by Let-7 MicroRNA in Human Cells. Science 2005, 309:1573–1576.

[12] Winter J, Jung S, Keller S, Gregory RI: Many roads to maturity: microRNA biogenesis pathways and their regulation. Nature cell biology 2009, 11:228–234.

[13] Fang Y, Spector DL: Identification of Nuclear Dicing Bodies Containing Proteins for MicroRNA Biogenesis in Living Arabidopsis Plants. Current Biology 2007, 17:818–823.

[14] Ha M, Kim VN: Regulation of microRNA biogenesis. Nature Reviews Molecular Cell Biology 2014, 15:509–524.

[15] Lund E, Güttinger S, Calado A, Dahlberg JE, Kutay U: Nuclear export of microRNA precursors.Science 2004, 303:95–98.

[16] Piskounova E, Polytarchou C, Thornton JE, LaPierre RJ, Pothoulakis C, Hagan JP, Iliopoulos D, Gregory RI: Lin28A and Lin28B Inhibit let-7 MicroRNA Biogenesis by Distinct Mechanisms. Cell 2011, 147:1066–1079.

[17] MacRae IJ, Zhou K, Li F, Repic A, Brooks AN, Cande WZ, Adams PD, Doudna JA: Structural Basis for Double-Stranded RNA Processing by Dicer. Science 2006, 311:195–198.

[18] Kim VN: MicroRNA biogenesis: coordinated cropping and dicing. Nature Reviews Molecular Cell Biology 2005, 6(5), 376–385.

[19] Cai X, Hagedorn CH, Cullen BR: Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 2004, 10:1957–1966.

[20] Hayashita Y, Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S, Yatabe Y, Kawahara K, Sekido Y, Takahashi T: A Polycistronic MicroRNA Cluster, miR-17-92, Is Overexpressed in Human Lung Cancers and Enhances Cell Proliferation. Cancer Res 2005, 65:9628–9632.

[21] Kim Y-K, Kim VN: Processing of intronic microRNAs. EMBO J 2007, 26:775–783.

[22] Zhu Y, Kalbfleisch T, Brennan MD, Li Y: A MicroRNA gene is hosted in an intron of a schizophrenia-susceptibility gene. Schizophrenia Research 2009, 109:86–89.

[23] Zhang Z, Qin Y-W, Brewer G, Jing Q: MicroRNA degradation and turnover: regulating the regulators.Wiley Interdiscip Rev RNA 2012, 3:593–600.

[24] Kilic ID, Dodurga Y, Uludag B, Alihanoglu YI, Yildiz BS, Enli Y, Secme M, Bostancı HE: MicroRNA -143 and -223 in obesity.Gene 2015, 560:140–142.

[25] Wang X, Tan L, Lu Y, Peng J, Zhu Y, Zhang Y, Sun Z: MicroRNA-138 promotes tau phosphorylation by targeting retinoic acid receptor alpha.FEBS Lett 2015, 589:726–729.

[26] Porrello ER, Mahmoud AI, Simpson E, Johnson BA, Grinsfelder D, Canseco D, Mammen PP, Rothermel BA, Olson EN, Sadek HA: Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family.Proc Natl Acad Sci USA 2013, 110:187–192.

[27] Bostjancic E, Zidar N, Stajer D, Glavac D: MicroRNAs miR-1, miR-133a, miR-133b and miR-208 are dysregulated in human myocardial infarction.Cardiology 2010, 115:163–169.

[28] Rayner KJ, Suárez Y, Dávalos A, Parathath S, Fitzgerald ML, Tamehiro N, Fisher EA, Moore KJ, Fernández-Hernando C: MiR-33 contributes to the regulation of cholesterol homeostasis.Science 2010, 328:1570–1573.

[29] Reid G, Pel ME, Kirschner MB, Cheng YY, Mugridge N, Weiss J, Williams M, Wright C, Edelman JJB, Vallely MP, McCaughan BC, Klebe S, Brahmbhatt H, MacDiarmid JA, van Zandwijk N: Restoring expression of miR-16: a novel approach to therapy for malignant pleural mesothelioma.Annals of oncology : official journal of the European Society for Medical Oncology / ESMO 2013, 24:3128–3135.

[30] Xiao S, Chen Y-C, Betenbaugh MJ, Martin SE, Shiloach J: MiRNA mimic screen for improved expression of functional neurotensin receptor from HEK 293 cells.Biotechnology and bioengineering 2015, 112:1632-1643.

[31] Cheng SF, Li L, Wang LM: miR-155 and miR-146b negatively regulates IL6 in Helicobacter pylori (cagA+) infected gastroduodenal ulcer.European review for medical and pharmacological sciences 2015, 19:607–613.

[32] Mattes J, Collison A, Plank M, Phipps S, Foster PS: Antagonism of microRNA-126 suppresses the effector function of TH2 cells and the development of allergic airways disease.Proc Natl Acad Sci USA 2009, 106:18704–18709.

[33] Ji Q, Hao X, Zhang M, Tang W, Yang M, Li L, Xiang D, Desano JT, Bommer GT, Fan D, Fearon ER, Lawrence TS, Xu L: MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells.PLoS ONE 2009, 4:e6816.

[34] Bouchie A: First microRNA mimic enters clinic. Nature biotechnology 2013, 31:577–577.

[35] Trang P, Medina PP, Wiggins JF, Ruffino L, Kelnar K, Omotola M, Homer R, Brown D, Bader AG, Weidhaas JB, Slack FJ: Regression of murine lung tumors by the let-7 microRNA.Oncogene 2010, 29:1580–1587.

[36] Takamizawa J, Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, Mitsudomi T, Takahashi T: Reduced Expression of the let-7 MicroRNAs in Human Lung Cancers in Association with Shortened Postoperative Survival. Cancer Res 2004, 64:3753–3756.

[37] Kelnar K, Peltier HJ, Leatherbury N, Stoudemire J, Bader AG: Quantification of therapeutic miRNA mimics in whole blood from nonhuman primates.Anal Chem 2014, 86:1534–1542.

[38] Bader AG: miR-34 – a microRNA replacement therapy is headed to the clinic. Frontiers in Genetics 2012, 3:120.

[39] Li Y-P, Gottwein JM, Scheel TK, Jensen TB, Bukh J: MicroRNA-122 antagonism against hepatitis C virus genotypes 1-6 and reduced efficacy by host RNA insertion or mutations in the HCV 5' UTR.Proc Natl Acad Sci USA 2011, 108:4991–4996.

[40] Janssen HLA, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, van der Meer AJ, Patick AK, Chen A, Zhou Y, Persson R, King BD, Kauppinen S, Levin AA, Hodges MR: Treatment of HCV infection by targeting microRNA.N Engl J Med 2013, 368:1685–1694.

[41] Lanford RE, Hildebrandt-Eriksen ES, Petri A, Persson R, Lindow M, Munk ME, Kauppinen S, Řrum H: Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection.Science 2010, 327:198–201.

[42] Haussecker D, Kay MA: miR-122 Continues to Blaze the Trail for MicroRNA Therapeutics. Mol Ther 2010, 18:240–242.

[43] Bader AG, Brown D, Stoudemire J, Lammers P: Developing therapeutic microRNAs for cancer. Gene therapy 2011,18:1121–1126.

[44] Gregory RI, Chendrimada TP, Shiekhattar R: MicroRNA biogenesis: isolation and characterization of the microprocessor complex.Methods Mol Biol 2006, 342:33–47.

[45] Suzuki HI, Arase M, Matsuyama H, Choi YL, Ueno T, Mano H, Sugimoto K, Miyazono K: MCPIP1 ribonuclease antagonizes dicer and terminates microRNA biogenesis through precursor microRNA degradation.Molecular cell 2011, 44:424–436.