Evaluation Of A Self-Modifying Cellular Automata In Modelling Urban Growth In Nyeri (Kenya)
[Full Text]
AUTHOR(S)
Kenneth Mubea, Gunter Menz
KEYWORDS
Keywords: GIS, Urban Growth Model, Cellular automata, XULU, Simulation
ABSTRACT
Abstract: Urban growth modelling cellular automata has blossomed due to the advancement in geographic information systems (GIS), remote sensing and computer technology. Among such urban growth models, our urban growth model (UGM), was modified from SLEUTH (Slope Land-use Transport Hill-shade) model. UGM has been integrated in the XULU modeling frame-work (eXtendable Unified Land Use Modelling Platform). In this research we evaluated a modified UGM whose transition rules were modified. In order to arrive at urban growth modelling, we used multi-temporal Landsat satellite image sets for 1987 and 2010 to map urban land-use in Nyeri. We compared our results with a normal UGM simulation. Thus, we arrived at two urban growth simulations for Nyeri in order to get a better glimpse of land-use system dynamics. Both models were calibrated and urban growth simulated until the year 2030 when Kenya plans to attain Vision 2030. Observed land-use changes in urban areas were compared to the results of both UGM models for the year 2010. The results indicate that the two models resulted in urban growth in different directions and magnitudes. This approach is useful to planners as it gives the scenarios of using different transition rules of a cellular automata model in urban growth modelling.
REFERENCES
[1] Triantakonstantis, D., & Mountrakis, G. (2012). Urban Growth Prediction: A Review of Computational Models and Human Perceptions. Journal of Geographic Information System, 4(6), 555-587.
[2] Sipper , M. (1997). Evolution of Parallel Cellular Machines: The Cellular Programming Approach. Berlin: Springer.
[3] Tobler, W. (1979). Cellular Geography. In S. Gale , & G. Olsson (Eds.), Philosophy in Geography (pp. 379-386). Dortrecht: Reidel.
[4] Wolfram, S. (1994). Cellular automata. In A. Wesley, S. Wolfram, & M. A. Reading, Cellular Automata and Complexity: Collected Papers. Boulder: Westview Press.
[5] Wu, F. (1999). GIS based simulation as an exploratory analysis for space: time processes. The Journal of Geographic Systems, 1(3), 199-218
[6] Clarke, K., Hoppen, S., & Gaydos, L. (1997). A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environment and Planning B: Planning and Design, 24(2), 247-261.
[7] Liu, Y. (2008). Modelling Urban Development with Geographical Information Systems and Cellular Automata (1 ed.). Florida: CRC Press.
[8] Goetzke, R., & Judex, M. (2011). Simulation of urban land-use change in North Rhine- Westphalia ( Germany ) with the Java-based modelling plat- form Xulu. In P. Mandl, & A. Koch, Modeling and Simulating Urban Processes (pp. 99–116). Munster: LIT-Verlag.
[9] Mubea, K., Goetzke, R., & Menz, G. (2013). Simulating Urban Growth in Nakuru (Kenya) using Java-Based Modelling Platform XULU. 2013 UKSim-AMSS 7th European Modelling Symposium. Manchester.
[10] Mubea, K., Goetzke, R., & Menz, G. (2014). Applying cellular automata for Simulating and Assessing Urban Growth Scenario Based in Nairobi, Kenya. International Journal of Advanced Computer Science and Applications, 5(2), 1-13.
[11] Schmitz, M., Bode, T., Thamm, H. P., & Cremers, A. B. (2007). XULU - A generic JAVA-based platform to simulate land use and land cover change ( LUCC ). In L. Oxley, & D. Kulasiri (Ed.), MODSIM 2007 International Congress on Modelling and Simulation (pp. 2645–2649). Modelling and Simulation Society of Australia and New Zealand.
[12] Mundia, C. N., Aniya, M., & Murayama, Y. (2010). Remote Sensing and GIS Modeling of Spatial Processes of Urban Growth in an African City. A Case Study of Nairobi. In C. N. Mundia, C. Kamusoko, & Y. Murayama, Recent Advances in GIS and Remote Sensing Analysis in Sub-Sahara Africa. New York, USA: Nova Science Publishers.
[13] Government of Kenya. (2007). Kenya Vision 2030. Nairobi: Ministry of Planning and National Development.
[14] Menz, G., Judex, M., Orekan, V., Kuhn, A., Heldmann, M., & Thamm, H. P. (2010). Land use and land cover modeling in Central Benin. In P. Spezh, M. Christoph, & B. Dieckkrüger, Impacts of Global Change on the Hydrological Cycle in West and Northwest Africa (pp. 70-73). Heidelberg: Springer.
[15] Pontius Jr, R. G., Boersma, W., Castella, J., Clake, K., Nijs, T., Dietzel, C., et al. (2008). Comparing the input, output, and validation maps for several models of land change. Annals of Regional Science, 42(1), 11-47.
[16] Jantz, A. J., Goetz, S. J., Donato, D., & Claggett, P. (2010). Designing and implementing a regional urban modeling system using the SLEUTH cellular urban model. Computers, Environment and Urban Systems, 34(1), 1-16.
[17] Anderson, J. F., Hardy, E. E., Roach, J. T., & Witmer, R. E. (1976). A land use and land cover classification system for use with remote sensor data. Washington: U.S. Geological Survey.
[18] Goetzke, R. (2011, 6 10). Entwicklung eines fernerkundungsgestützten Modellverbundes zur Simulation des urban-ruralen Landnutzungswandels in Nordrhein-Westfalen. Bonn: University of Bonn.
[19] Mubea, K., & Menz, G. (2012, 12 31). Monitoring Land-Use Change in Nakuru (Kenya) Using Multi-Sensor Satellite Data. Advances in Remote Sensing, 1(3), 74–84.
[20] Republic of Kenya. (2000). Economic survey 2000. Nairobi: Government Printer.
[21] Republic of Kenya. (2010). Economic survey 2010. Nairobi: Government Printer.
[22] UN-HABITAT. (2010). State of the World Cities 2010/2011. Bridging the Urban Divide.
[23] Von Neumann, J. (1966). Theory of Self-Reproducing Automata Theory of Self-Reproducing Automata. (A. W. Burks, Ed.) Illinois: University of Illinois Press.
[24] Anderson, J. F., Hardy, E. E., Roach, J. T., & Witmer, R. E. (1976). A land use and land cover classification system for use with remote sensor data. Washington: U.S. Geological Survey.
[25] Goetzke, R. (2011, 6 10). Entwicklung eines fernerkundungsgestützten Modellverbundes zur Simulation des urban-ruralen Landnutzungswandels in Nordrhein-Westfalen. Bonn: University of Bonn.
[26] Mubea, K., & Menz, G. (2012, 12 31). Monitoring Land-Use Change in Nakuru (Kenya) Using Multi-Sensor Satellite Data. Advances in Remote Sensing, 1(3), 74–84.
[27] Republic of Kenya. (2000). Economic survey 2000. Nairobi: Government Printer.
[28] Republic of Kenya. (2010). Economic survey 2010. Nairobi: Government Printer.
|