International Journal of Scientific & Technology Research

Home About Us Scope Editorial Board Blog/Latest News Contact Us
10th percentile
Powered by  Scopus
Scopus coverage:
Nov 2018 to May 2020


IJSTR >> Volume 3- Issue 12, December 2014 Edition

International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616

Geochemical And Petrographic Studies Of Lokoja Sandstone: Implications On Source Area Weathering, Provenance, And Tectonic Setting

[Full Text]



Madukwe, H. Y., Akinyemi, S. A., Adebayo, O. F., Ojo, A. O., Aturamu, A. O. , Afolagboye, L. O.



Index Terms: geochemistry, petrography, weathering, provenance, tectonic setting, Lokoja sandstone.



Abstract: Ten road - cut samples collected from five lithological sections of Lokoja sandstone formation in the Middle Niger basin were investigated using integrated granulometric, petrographic and geochemical analyses. Results of grain size analysis; standard deviation and skewness which ranges from 0.08 to -0.05 and 0.59 to -0.07 respectively suggest very well sorted to moderately well sorted sediments. Lokoja sandstone is strongly coarsely skewed and dominantly leptokurtic implying river laid sediments deposited by low energy current. The graphic mean falls between 0.1 and 1.35 suggesting mainly medium to coarse grained sediments. A mineralogical constituent includes quartz, feldspar, mica, rock fragments, clay matrix and cement fraction. The low quantities of quartz and feldspar classify the sandstone as Lithic Arenite. Heavy mineral petrographic results show that the opaque minerals constitute about 72.99% and non-opaque mineral suites of zircon, tourmaline, rutile, staurolite, sillimanite, garnet, apatite and epidote which is indicative of igneous and metamorphic sources, perhaps from the southwest and north central Basement Complex terrains. The calculated mineral maturity index (MMI) and zircon-tourmaline-rutile ratio (ZTR) indices suggest mineralogically immature to sub-mature sediments. The plot of SiO2 versus Al2O3 + K2O + Na2O reveals semi arid to arid conditions for the Lokoja sandstone with varied maturity. The geochemical datasets reveal mature lithic arenites including sub-greywacke and protoquartzites. The chemical index of alteration (CIA) and mineralogical index of alteration (MIA) values (79.37 and 58.74 respectively) implied that their source area underwent “intense” recycling but “moderate to high” degree of chemical weathering. The discriminant function plot shows that the plotted sandstones were predominantly derived from felsic igneous source. Besides, the lower ratios of Ni/Co, Cr/Ni, Cr/Th, Cr/Sc, Th/Sc, La/Co and Th/Co suggest felsic source rock. The K2O/Na2O versus SiO2 binary tectonic diagram shows source materials in the field of oceanic island arc. The Th-Co-Zr/10 and Th-Sc-Zr/10 ternary diagrams also plotted in the field of oceanic island arc.



[1] Adeleye, D. R. Sedimentology of the fluvial Bida Sandstones (Cretaceous) Nigeria. Sedimentary Geology, 1972; 12, 1-24.

[2] Agyingi, C.M., Geology of upper Cretaceous rocks in the eastern Bida Basin, Central Nigeria. Unpublished Ph.D. Thesis, University of Ibadan, Nigeria, 1991; 501pp.

[3] Akinmosin, A., and Osinowo, O.O. Geochemical and mineralogical composition of Ishara sandstone deposit. SW Nigeria Cont. J. Earth Sci., 2008; 3, 33-39.

[4] Akintola, A.I., Ikhane, P.R., Okunlola, O. A., Akintola, G.O., Oyebolu, O.O., and Owoseni, F.R. Mineralogical and geochemical studies of sandstone in Imobi study area and its environs, southwestern Nigeria. Journal of Environment and Earth Science, 2012; 2, 93-105.

[5] Akinyemi, S. A., Adebayo, O. F., Ojo, A. O., Fadipe, O. A., Gitari, W. M. Geochemistry and mineralogy of the Campanian Sandstone of Lokoja-Basange Formation, Middle Niger Basin (Lokoja sub-basin), Nigeria: Implications for provenance, weathering, tectonic setting and paleo-redox condition. Journal of Natural Sciences Research, 2014; 4, No.16, 65 – 89.

[6] Al-Juboury, A. Petrography and major element geochemistry of Late Triassic Carpathian Keuper sandstones: Implications for provenance. Bulletin de l’Institut Scientifique, Rabat, section Sciences de la Terre, 2007; no. 29, 1-14.

[7] Armstrong-Altrin, J.S., Lee, Y.I., Verma, S.P., Ramasamy, S. (2004). Geochemistry of sandstones from the upper Miocene kudankulam Formation, southern India: Implication for provenance, weathering and tectonic setting. Journal of sedimentary Research, 74(2), 285 – 297.

[8] Armstrong-Altrin, J.S., Verma, S. P. Critical evaluation of six tectonic setting discrimination diagrams using geochemical data of Neogene sediments from known tectonic settings. Sedimentary Geology, 2005; 177, 115–129.

[9] Bhatia, M.R., and Crook. K.A.W. Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins. Contrib. Mineral. Petrol. 1986; 92, 181–193.

[10] Bhatia, M. R., and Crook, A. W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 1986; 92, 181–193.

[11] Bock, B., McLennan, S.M., Hanson, G.N. Geochemistry and provenance of the Middle Ordovician Austin Glen Member (Normanskill Formation) and the Taconian Orogeny in New England. J. Sediment., 1998; 45, 635–655.

[12] Braide, S. P. Syntectonic fluvial sedimentation in the central Bida Basin. Journal of Mining and Geology, 1992b; 28, 55-648.

[13] Braide, S.P. Geological development, origin and energy mineral resource potential of the Lokoja Formation in the southern Bida Basin. Journal of Mining and Geology, 1992a; 28, 33-44.

[14] Condie, K.C., Boryta, M.D., Liu, J., Quian, X. The origin of khondalites: geochemical evidence from the Archean to Early Proterozoic granulitic belt in the North China Craton. Precambrian Research, 1992; 59, 207-223.

[15] Cullers, R. L. The controls on the major and trace element evolution of shales, siltstones and sandstones of Ordovician to Tertiary age in the Wet Mountain region, Colorado, U.S.A. Chemical Geology, 1995; 123, 107-131.

[16] Dessauvagie, T. F. G. (1975). Explanatory note to the geological map of Nigeria, scale 1: 1,000,000. Jour. Min. and Geol. (Nig. Min. Geol. And Met. Soc.), 9 (1 2), 3 28.

[17] Dickson, W.R., Suczek, C. A. Plate tectonics and sandstone compositions: American Association of petroleum Geologist, 1979; 63, 2164 – 2182.

[18] Dupuis, C, Hebert, R, Cote, VD, et al.”Geochemistry of sedimentary rocks melange and flysch units south of the YarlungZangbo suture zone, southern Tibet”. Journal of Asian Earth Sciences, 2006; 26, 489-508.

[19] Elzien, S.M.; Farah, A. A. Alhaj, A. B.; Mohamed, A.A.; Al-Imam, O.A. O., Hussein, A. H.; Khalid, M. K., Hamed, B.O.; Alhaj, A. B. Geochemistry of Merkhiyat Sandstones, Omdurman Formation, Sudan: Implication of depositional environment, provenance and tectonic setting. International Journal of Geology, Agriculture and Environmental Sciences Volume – 2 Issue – 3 :10-15.

[20] Folk, R.L., and Ward, W.O. Brazos river bar: a study in the significance of grain size parameters. Journal of sedimentary petrology, 1957; vol.27, Pp. 3-26

[21] Friedman, G.M. Differences in size distribution of population of particles among sands of various origins, sedimentology, 1969; vol. 26, p. 3-32.

[22] Gideon, Y. B., Fatoye, F. B., and Omada, J. I. Sedimentological Characteristics and Geochemistry of Ajali Sandstone Exposed at Ofe-Jiji and Environs, Northern Anambra Basin, Nigeria. Research Journal of Environmental and Earth Sciences, 2014; 6(1), 10-17.

[23] Hebron, M.M. Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Petrology, 1988; 58, 820-829.

[24] Hubert, J. T. Zircon-tourmaline-rutile maturity index and interdependence of the composition of heavy minerals assemblages with the gross composition and texture of sandstones. J. Sed pet., 1962; 32:440–450.

[25] Huntsman-Mapila, P., Kampunzu, A.B., Vink, B., et al. Cryptic indicators of provenance from the geochemistry of theOkavango Delta sediments, Bostwana”. Sedimentary Geology, 2005; 174, 123-148.

[26] Ibe, K.K., and Akaolisa, C.C.Z. Sand classification scheme for Ajali sandstone units in Ohafia area. SE Nigeria J. Geol. Min. Res., 2010; 2(1), 16-22.

[27] Idowu, J.O. and Enu, E.I. Petroleum geochemistry of some Late Cretaceous Shales from the Lokoja Sandstone of Middle Niger Basin, Nigeria. Journal of African Earth Sciences, 1992; v.14, p.443-455.

[28] Igwe, E. O., Amoke, G. U. & Ngwu, C. N. Provenance and Tectonic Setting of Amasiri Sandstone (Turonian) in Ugep Area, Southern Benue Trough, Nigeria: Evidences from Petrography and Geochemistry. Global Journal of Science Frontier Research Environment & Earth Science, 2013; Volume 13 Issue 2 Version 1.0: 32-40.

[29] Ikhane, P. R., Akintola, A. I., Bankole, S. I., Oyebolu, O. O. and Ogunlana, E. O. Granulometric analysis and heavy mineral studies of the sandstone facies exposed near Igbile, southwestern Nigeria. International Research Journal of Geology and Mining (IRJGM) (2276-6618), 2013;Vol. 3(4) pp. 158-178.

[30] Ikhane, P.R., Omosanya, K.O., and Owoseni, F.R. Provenance studies of sandstone in Imobi and its environs south western Nigeria. International Journal of Current Research, 2011; 3, 344-350.

[31] Jafarzadeh, M., and Hosseini-Barzi, M. Petrography and geochemistry of Ahwaz Sandstone Member of Asmari Formation, Zagros, Iran: implications on provenance and tectonic setting. Revista Mexicana de Ciencias Geológicas, 2008; 25, 247-260.

[32] Jan Du Chene, R. E., Klasz, I.D.E., Archibong, E. E. Biostratigraphic study of the borehole Ojo-1, SW Nigeria, with special emphasis on the Cretaceous Microfloral. Revue de Micropaleontology, 1979; 21, 123-139.

[33] Jenner, G.A., Firyery, B.J. and McLennan, S.M. Geochemistry of Archean yellow knife super group geochemistry. Cosmachim. Acta, 1988; 45(2): 19-23.

[34] Jones, H. A. The oolitic ironstone of Agbaja Plateau, Kabba Province. Record of the Geological survey of Nigeria, 1955; pp.20 – 43.

[35] Kennedy, W. Q. The influence of basement structure on the evolution of the coastal (Mesozoic and Tertiary) basins. In: Recent Basins around Africa. Proceedings of the Institute of Petroleum Geologists Society, London, 1965; pp. 35-47.

[36] King, L. C. Outline and distribution of Gondwanaland. Geological Magazine, 1950; 87, 353-359. http://dx.doi.org/10.1017/S0016756800077311.

[37] Kogbe, C. A. Geological Interpretation of Landsat Imagery of part of Central of central Nigeria. Journal of Mining and Geology, 1981; 28, 66-69.

[38] Kogbe, C. A., Ajakaiye, D. E., & Matheis, G. Confirmation of rift structure along the middle- Niger Valley, Nigeria. Journal of African Earth Sciences, 1983; 1, 127-131.

[39] McLennan S. M., Rare earth elements in sedimentary rocks: influence of the provenance and sedimentary process, in: Geochemistry and Mineralogy of Rare Earth Elements, 1989; 21, 169-200.

[40] McLennan, S.M.”Weathering and global denudation”. Journal of Geology, 1993; 101, 295- 303.

[41] Nwajide, C.S., and Hoque, MProblem of classification and maturity. Evaluation of a diagno- stically altered fluvial Sandstone. Geologic on Nujibouw, 1985; vol.64 p 67-70.

[42] Obaje, N. G., Musa, M. K. Odoma, A. N. and Hamza, H. The Bida Basin in north-central Nigeria: sedimentology and petroleum geology. Journal of Petroleum and Gas Exploration Research, 2011; Vol. 1(1) pp. 001-013.

[43] Obaje, N.G., Wehner, H., Scheeder, G., Abubakar. M. B., Jauro, A. Hydrocarbon prospectivity of Nigeria’s inland basins: from the view point of organic geochemistry and organic petrology. American Association of Petroleum Geologist Bull., 2004; 87: 325-353.

[44] Obiefuna, G.I., and Orazulike, D. M. Geochemical and Mineralogical Composition ofBima Sandstone Deposit, Yola Area, NE Nigeria. Research Journal of Environmental and Earth Sciences, 2011; 3(2), 95-102.

[45] Ojo SB, Ajakaiye DE (1989). Preliminary interpretation of gravity measurements in the Mid-Niger Basin area, Nigeria. In: Kogbe, C.A. (Ed.), Geology of Nigeria. 2nd edition,Elizabethan Publishers, Lagos, pp. 347–358.

[46] Ojo, O. J. and Akande, S.O., Sedimentological and palynological studies of the Patti Formation, South-eastern Bida Basin, Nigeria: Implications for paleoenvironments and paleogeography. Nig. Ass. Pet. Expl. Bull., 2006; V.19, no.1, p. 61-77.

[47] Ojo, O. J., Akande, S.O. Microfloral assemblage, age and paleoenvironment of the Upper Cretaceous Patti Formation, southeastern Bida Basin, Nigeria. Journal of Mining and Geology; 2008; 44: 71-78.

[48] Ojo, S.B. Middle Niger Basin revisited: magnetic constraints on gravity interpretations. Abstract, 20th Conference of the Nigeria Mining and Geosciences Society, Nsukka, 1984; pp. 52–53.

[49] Ojo, S.B. and Ajakaiye, D.E. Preliminary interpretation of gravity measurements in the Middle Niger Basin area, Nigeria. In C.A. Kogbe (editor) Geology of Nigeria, 1976; pp. 295 – 307.

[50] Omali, A.O., Imasuen, O.I and Okiotor, M. E. Sedimentological Characteristics of Lokoja Sandstone Exposed At Mount Patti, Bida Basin, Nigeria. Advances in Applied Science Research, 2011; 2 (2), 227-245.

[51] Osokpor, J., and Okiti, J. Sedimentological and Paleodepositional Studies of Outcropping Sediments in Parts of Southern Middle Niger Basin. International Journal of Science and Technology, 2013; Vol. 2, 840-846.

[52] Ronov, A.B., Balashov, Y.A., Girin, Y.P., Bratishko, R.K.H., Kazakov, G.A. Regularities of rare earth element distribution in the sedimentary shell and in the crust of the earth. Sedimentology, 1974; 21, 171–193.

[53] Roser, B.P., and Korsch, R.J. Provenance signatures of sandstone–mudstone suites determined using discriminant function analysis of major-element data: Chemical Geology, 1988; 67, 119-139.

[54] Roser, B.P., and Korsch, R. J. Determination of tectonic setting of sandstones-mudstones suites using SiO2 content and K2O/Na2O ratio: Journal of Geol., 1986; 94, 635-650.

[55] Spalletti, L.A., Queralt, I., Matheos, S.D., et al.”Sedimentary petrology and geochemistry of siliciclastic rocks from the upper Jurassic Tordillo Formation (Neuquen Basin, western Argentina): Implications for provenance and tectonic setting”, Journal of South American Earth Sciences, 2008; 25, 440-463.

[56] Suttner, L. J., and Dutta, P. K.. Alluvial sandstone composition and paleoclimate. I. Framework mineralogy. J. Sed. Petrol. 1986; 56, 329–345.

[57] Taylor, S. R., and McLennan, S. M. The Continental Crust: its Composition and Evolution: An Examination of the Geological Record Preserved in Sedimentary Rocks: Oxford, U.K., Blackwell, 1985; 328 pp.

[58] Tijani, M. N., Nton, M. E., Kitagawa, R. Textural and geochemical characteristics of the Ajali Sandstone, Anambra Basin, SE Nigeria: Implication for its provenance. Comptes Rendus Geoscience, 2010; 342, 136–150.

[59] Valloni, R., Mezzardi, G. Compositional suites of terrigenous deep sea sands of the present continental margins: Sedimentology, 1984; 31, 353–364.

[60] Voicu, G., and Bardoux, M. Geochemical behaviour under tropical weathering of the Barama-Mazaruni greenstone belt at Omai gold mine, Guiana Shield. Applied Geochemistry, 2002; 17, 321-336.

[61] Voicu, G., Bardoux, M., Harnois, L., and Grepeau, R. Lithological and geochemical environment of igneous and sedimentary rocks at Omai gold mine, Guyana, South America. Exploration and Mining Geology, 1997; 6, 153-170.

[62] Whiteman, A.J. Nigeria. Its Petroleum Geology, Resources and Potential. Graham and Trotman, London, 1982; 399p.

[63] Wronkiewicz, D.J., and Condie, K.C. Geochemistry and provenance of sediments from the Pongola Supergroup, South Africa: Evidence for a 3.0-Ga-old continental Craton: Geochimica et Cosmochimica Acta, 1989; 53, 1537–1549.

[64] Wronkiewicz, D.J., Condie, K.C. Geochemistry of Archean shales from the WitwaterslandSupergroup, South Africa: source area weathering and provenance. Geochimica et Cosmochimica Acta, 1987; 51, 2401- 2416.

[65] Wronkiewicz, D. J., Condie, K. C. Geochemistry and mineralogy of sediments from the Ventersdorp and Transvaal Supergroups, South Africa: Cratonic evolution during the Early Proterozoic. Geochim. Cosmochim. Acta, 1990; 54, 343–354.