International Journal of Scientific & Technology Research

Home About Us Scope Editorial Board Blog/Latest News Contact Us
10th percentile
Powered by  Scopus
Scopus coverage:
Nov 2018 to May 2020


IJSTR >> Volume 9 - Issue 11, November 2020 Edition

International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616

Biomarker Of Kidney Function In Electroplating Workers Exposed To Chromium

[Full Text]



Katharina Oginawati, Septian Hadi Susetyo, Intan Pratiwi



Biomarker, Urinary Chromium, Urinary albumin, Chromium Exposure, Electroplating industry



Chromium (Cr) is one of the substances used in the electroplating industry. Continuous exposure to chromium in a long time has the potential to cause renal function impairment. This study aimed to analyze the exposure of inhaled Cr from the electroplating process. This research used the cross-sectional method with The number of respondents of the electroplating workers was 40 people who conducted in three industry electroplating in Indonesia. Each respondent consists of 20 workers from automatic processing in Compony X and 20 workers from manual processing in industry Y (15 respondents) and Z (5 respondents). The Chromium exposure to the worker was measured by a personal sampler pump, which was equipped with a PVC filter, and it was placed on the collar of the worker shirt as a breathing zone. The analysis of Urinary Chromium (UCr) and urinary albumin (UAlb) were carried out using a glass bottle sample of 50 ml. UCr was analyzed using analyzed with Graphite Furnace Atomic Absorption Spectrophotometer (AAS), and UAlb was analyzed using the Immunoturbidimetry method. This study showed 40 samples had concentration values were 0.0031 mg/m3 in the automatic workers and 0.0034 mg/m3 in manual workers. The mean values of UCr were 168.93 µg/g creatinine in the automatic workers and 203.99 µg/g creatinine in the manual workers. While the mean values of UAlb were 7.032 µg/mg creatinine for the automatic workers and 9.52 µg /mg creatinine for the manual workers. Based on the statistic analysis, there were no significant differences between automatic workers and manual workers.



[1] Maleki, A., Hayati, B., Naghizadeh, M., & Joo, S. W. (2015). Adsorption of hexavalent chromium by metal organic frameworks from aqueous solution. Journal of Industrial and Engineering Chemistry, 28, 211-216. https://doi.org/10.1016/j.jiec.2015.02.016
[2] Rezaei, H. (2016). Biosorption of chromium by using Spirulina sp. Arabian Journal of Chemistry, 9(6), 846-853. https://doi.org/10.1016/j.arabjc.2013.11.008
[3] Wijayawardena, M. A. A., Megharaj, M., & Naidu, R. (2016). Exposure, toxicity, health impacts, and bioavailability of heavy metal mixtures. In Advances in agronomy (Vol. 138, pp. 175-234). Academic Press. https://doi.org/10.1016/bs.agron.2016.03.002
[4] Sudarsana, E., Setiani, O., and Suhartono. (2013):Hubungan Riwayat Paparan Kromium dengan Gangguan Fungsi Ginjal pada Pekerja Pelapisan Logam di Kabupaten Tegal.Jurnal Kesehatan Lingkungan Indonesia Vol. 12 No. 1.
[5] Ahmed, M. K., Baki, M. A., Islam, M. S., Kundu, G. K., Habibullah-Al-Mamun, M., Sarkar, S. K., & Hossain, M. M. (2015). Human health risk assessment of heavy metals in tropical fish and shellfish collected from the river Buriganga, Bangladesh. Environmental science and pollution research, 22(20), 15880-15890. https://doi.org/10.1007/s11356-015-4813-z
[6] Agency for Toxic Subtances and Disease Registry (ATSDR). (2012):Toxicological Profile for Chromium, U.S Department of Health and Human Services, Public Health Service, Atlanta, Georgia.
[7] Aherrera, A., Olmedo, P., Grau-Perez, M., Tanda, S., Goessler, W., Jarmul, S., ... & Navas-Acien, A. (2017). The association of e-cigarette use with exposure to nickel and chromium: a preliminary study of non-invasive biomarkers. Environmental research, 159, 313-320. https://doi.org/10.1016/j.envres.2017.08.014
[8] Antelmi, A., Lovreglio, P., Drago, I., Greco, L., Meliddo, G., Manghisi, M.S., Ferrara, F., Basso, A., andSoleo, L.(2007):Significance and Limitation of CreatinineAdjustment for Urinary Chromium and Arsenic in Biological Monitoring of Occupational Exposure to These Metallic Elements. G Ital Med Lav Ergon 29 (3), 288-91.
[9] Jyh, L.C., Yue, L.G., Perng, J.T. and Li, F.S. (2002): Use of Inhalable Cr+6 Esposures to Characterize Urinary Chromium Concentrations in Plating Industry Workers. Journal Occupational Health 2002 (44) ,46-52.
[10] Dallago, B. S. L., Lima, B. A. F., Braz, S. V., da Silva Mustafa, V., McManus, C., do Prado Paim, T., ... & Louvandini, H. (2016). Tissue accumulation and urinary excretion of Cr in chromium picolinate (CrPic)-supplemented lambs. Journal of Trace Elements in Medicine and Biology, 35, 30-35. https://doi.org/10.1016/j.jtemb.2016.01.004
[11] Pan, C. H., Jeng, H. A., & Lai, C. H. (2018). Biomarkers of oxidative stress in electroplating workers exposed to hexavalent chromium. Journal of Exposure Science & Environmental Epidemiology, 28(1), 76-83. https://doi.org/10.1038/jes.2016.85
[12] Achmad, R. T., & Auerkari, E. I. (2017). Effects of chromium on human body. Annual Research & Review in Biology, 1-8. https://doi.org/10.9734/ARRB/2017/33462
[13] Wang, Y., Su, H., Gu, Y., Song, X., & Zhao, J. (2017). Carcinogenicity of chromium and chemoprevention: a brief update. OncoTargets and therapy, 10, 4065. doi: 10.2147/OTT.S139262
[14] Mughal, S.T., Shafique, T., Aftab, T., and Bashir, F. (2008): Treatment of Electroplating Effluent, Centre for Environmental Protection Studies (CEPS) PCSIR Laboratories Complex, Lahore, J. Chem. Soc. Pak., Vol.30, No.1.
[15] Barrera, E. G., Bazanella, D., Castro, P. W., Boschetti, W., Vale, M. G., & Dessuy, M. B. (2017). Alternative method for chromium determination in pharmaceutical drugs by HR-CS GF AAS and direct analysis of solid samples. Microchemical Journal, 132, 365-370. https://doi.org/10.1016/j.microc.2017.02.020
[16] Karosi, R., Boruzs, K., Béni, Á., Posta, J., Balogh, J., & Andruch, V. (2012). Using dimethyl indocarbocyanide (DIC) as ion-pair agent for chromium speciation and its application in GFAAS analysis of water. Analytical Methods, 4(8), 2361-2364. https://doi.org/10.1039/C2AY05949E
[17] Wagner, R., Machann, J., Lehmann, R., Rittig, K., Schick, F., Lenhart, J., ... & Fritsche, A. (2012). Exercise-induced albuminuria is associated with perivascular renal sinus fat in individuals at increased risk of type 2 diabetes. Diabetologia, 55(7), 2054-2058. https://doi.org/10.1007/s00125-012-2551-z
[18] National Institute of Occupational Safety and Health (NIOSH) 7600 issue 2. 1994. Chromium, Hexavalent.
[19] IRRST (Occupational Health and Safety Reasearch). 2013. Sampling Guide for Air Contaminants in the Workplace 8th Edition. Montreal.
[20] Deng, H., & Chen, G. (2014). Health risk assessment for typical and abandoned chromium-contaminated sites. Chinese Journal of Geochemistry, 33(4), 382-386. https://doi.org/10.1007/s11631-014-0701-3
[21] Oginawati, K., Sidhi, R., & Susetyo, S. H. (2020). Lead Exposure in Trader Communities in Industrial Area of the Battery Recycling Plant: Tangerang, Indonesia. Journal of Ecological Engineering, 21(3).
DOI: https://doi.org/10.12911/22998993/118297
[22] Soemirat, J. (2011). Kesehatan lingkungan. Yogyakarta, Gamapress.
[23] National Institute of Occupational Safety and Health (NIOSH) 8310 issue 2. 1994. METALS in Urine.
[24] Keputusan Menteri Tenaga Kerja Republik Indonesia. Nomor: KEP-51/MEN/1999, tentang Nilai Ambang Batas (NAB) Kebisingan di Tempat Kerja.
[25] Keputusan Menteri Kesehatan Republik Indonesia. Nomor: 1405/Menkes/SK/11/2002, tentang Persyaratan dan Tata Cara Penyelenggaraan Kesehatan Lingkungan Kerja dan Industri.
[26] Keputusan Menteri Tenaga Kerja Republik Indonesia. Surat Edaran Menteri Tenaga Kerja Nomor: SE01/MENAKER/1997, Nilai Ambang Batas faktor kimia di udara lingkungan kerja.
[27] American Conference of Industrial Hygienists (ACGIH). 2005. TLVs and BEIs.
[28] Bennett, J., Marlow, D., Nourian, F., Breay, J., Feng, A., & Methner, M. (2018). Effect of ventilation velocity on hexavalent chromium and isocyanate exposures in aircraft paint spraying. Journal of occupational and environmental hygiene, 15(3), 167-181. https://doi.org/10.1080/15459624.2017.1401710
[29] Mula-Abed, W. A. S., Al-Hashmi, H. S., & Al-Muslahi, M. N. (2011). Indicators of renal glomerular and tubular functions in patients with beta-thalassaemia major: A cross sectional study at the Royal Hospital, Oman. Sultan Qaboos University medical journal, 11(1), 69.
[30] Wang, T., Jia, G., Zhang, J., Ma, Y., Feng, W., Liu, L., ... & Liu, Z. (2011). Renal impairment caused by chronic occupational chromate exposure. International archives of occupational and environmental health, 84(4), 393-401. https://doi.org/10.1007/s00420-010-0569-4
[31] US Environmental Protection Agency (EPA). (2015).Conducting a Human Health Risk Assessment.url htttp://www.epa.gov/risk/conducting-human-health-risk-assessment diakses pada 26 November 2015.
[32] Decharat, S. (2015). Chromium exposure and hygienic behaviors in printing workers in Southern Thailand. Journal of toxicology, 2015. https://doi.org/10.1155/2015/607435
[33] Klein, J., Caubet, C., Camus, M., Makridakis, M., Denis, C., Gilet, M., ... & du Boullay, O. T. (2020). Connectivity mapping of glomerular proteins identifies dimethylaminoparthenolide as a new inhibitor of diabetic kidney disease. Scientific RepoRtS, 10(1), 1-12. https://doi.org/10.1038/s41598-020-71950-7
[34] Cohen-Bucay, A., & Viswanathan, G. (2012). Urinary markers of glomerular injury in diabetic nephropathy. International journal of nephrology, 2012. https://doi.org/10.1155/2012/146987
[35] Kopf, S., Oikonomou, D., von Eynatten, M., Kieser, M., Zdunek, D., Hess, G., ... & Nawroth, P. P. (2014). Urinary excretion of high molecular weight adiponectin is an independent predictor of decline of renal function in type 2 diabetes. Acta diabetologica, 51(3), 479-489. DOI 10.1007/s00592-013-0542-2
[36] Pontillo, C., Jacobs, L., Staessen, J. A., Schanstra, J. P., Rossing, P., Heerspink, H. J., ... & Vanholder, R. (2017). A urinary proteome-based classifier for the early detection of decline in glomerular filtration. Nephrology Dialysis Transplantation, 32(9), 1510-1516. https://doi.org/10.1093/ndt/gfw239