International Journal of Scientific & Technology Research

Home About Us Scope Editorial Board Blog/Latest News Contact Us
10th percentile
Powered by  Scopus
Scopus coverage:
Nov 2018 to May 2020


IJSTR >> Volume 4 - Issue 11, November 2015 Edition

International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616

Phylogenetic Classification Of Bartonella Species By Comparing The Two-Component System Response Regulator Feup Sequences

[Full Text]



Mhamad Abou-Hamdan, Kassem Hamze, Ghayath Al-Lakkiss, Samer Farkh, Mhamad Mortada, Zaher Zeaiter



Keywords: Bartonella, feuPQ, feuP, two-component system, phylogeny, response regulator, cluster, MLST.



Abstract: The bacterial genus Bartonella is classified in the alpha-2 Proteobacteria on the basis of 16S rDNA sequence comparison. The Bartonella two-component system feuPQ is found in nearly all bacterial species. We investigated the usefulness of the response regulator feuP gene sequence in the classification of 18 well characterized Bartonella species. Phylogenetic relationships were inferred using parsimony, neighbour-joining and maximum-likelihood methods. Reliable classifications of most of the studied species were obtained. Bartonella were divided into two supported clades containing two supported clusters each. These results were similar to our previous data obtained with groEL, ftsZ, and ribC genes sequences. The wide range of feuP DNA sequence similarity (78.6 to 96.5%) among Bartonella species makes it a promising candidate for multi-locus sequence typing (MLST) of clinical isolates. This is the first report proving the usefulness of feuP sequences in bartonellae classification at the species level.



[1] LPSN http://www.bacterio.cict.fr/b/bartonella.html. (29-09-2015).

[2] Sato S, Kabeya H, Fujinaga Y, Inoue K, Une Y, Yoshikawa Y, Maruyama S., 2013. Bartonella jaculi sp. nov., Bartonella callosciuri sp. nov., Bartonella pachyuromydis sp. nov., and Bartonella acomydis sp. nov. isolated from wild Rodentia. Int J Syst Evol Microbiol. 63:1734-1740.

[3] Billeter SA, Hayman DT, Peel AJ, Baker K, Wood JL, Cunningham A, Suu-Ire R, Dittmar K, Kosoy MY., 2012. Bartonella species in bat flies (Diptera: Nycteribiidae) from western Africa. Parasitology. 139:324-329.

[4] Kosoy M, Bai Y, Lynch T, Kuzmin IV, Niezgoda M, Franka R, Agwanda B, Breiman RF, Rupprecht CE., 2010. Bartonella spp. in bats, Kenya. Emerg Infect Dis. 16:1875-1881.

[5] Dehio C., 2005. Bartonella-host-cell interactions and vascular tumor formation. Nat Rev Microbiol. 3: 621–631.

[6] Chomel BB, Kasten RW, Williams C, Wey AC, Henn JB, Maggi R, Carrasco S, Mazet J, Boulouis HJ, Maillard R, Breitschwerdt EB., 2009. Bartonella endocarditis: a pathology shared by animal reservoirs and patients. Ann N Y Acad Sci. 1166:120–126.

[7] Fournier PE, Lelievre H, Eykyn SJ, Mainardi JL, Marrie TJ, Bruneel F, Roure C, Nash J, Clave D, James E, Benoit-Lemercier C, Deforges L, Tissot-Dupont H, Raoult D., 2001. Epidemiologic and clinical characteristics of Bartonella quintana and Bartonella henselae endocarditis: a study of 48 patients. Medicine (Baltimore) 80:245–251.

[8] Edouard S, Raoult D., 2010. Bartonella henselae, an ubiquitous agent of proteiform zoonotic disease. Med Mal Infect. 40:319–330.

[9] Houpikian P, and Raoult D., 2001. 16S/23S rRNA intergenic spacer regions for phylogenetic analysis, identification, and subtyping of Bartonella species. J. Clin. Microbiol. 39:2768–2778.

[10] Birtles RJ, and Raoult D., 1996. Comparison of partial citrate synthase gene (gltA) sequences for phylogenetic analysis of Bartonella species. Int. J.Syst. Bacteriol. 46:891–897.

[11] Renesto P, Gautheret D, Drancourt M, Raoult D., 2000. Determination of the rpoB gene sequences of Bartonella henselae and Bartonella quintana for phylogenic analysis. Res Microbiol. Dec;151(10):831-6.

[12] La Scola B, Zeaiter Z, Khamis A, Raoult D., 2003. Gene-sequence-based criteria for species definition in bacteriology: the Bartonella paradigm. Trends Microbiol. 2003;11:318–21.

[13] Zeaiter Z., Fournier PE, Ogata H, and Raoult D., 2002. Phylogenetic classification of Bartonella species by comparing groEL sequences. Int. J.Syst. Evol. Microbiol. 52:165–171.

[14] Zeaiter Z, Liang Z, Raoult D., 2002. Genetic classification and differentiation of Bartonella species based on comparison of partial ftsZ gene sequences. J Clin Microbiol. 40:3641-7.

[15] Gundi VA, Davoust B, Khamis A, Boni M, Raoult D, La Scola B., 2004. Isolation of Bartonella rattimassiliensis sp. nov. and Bartonella phoceensis sp. nov. from European Rattus norvegicus. J Clin Microbiol. Aug;42(8):3816-8.

[16] Engel P, Salzburger W, Liesch M, Chang CC, Maruyama S, Lanz C, Calteau A, Lajus A, Médigue C, Schuster SC, Dehio C., 2011. Parallel evolution of a type IV secretion system in radiating lineages of the host-restricted bacterial pathogen Bartonella. PLoS Genet. Feb 10;7(2):e1001296.

[17] Hoch JA and Silhavy TJ., 1995. Two-Component Signal Transduction. American Society for Microbiology, Washington, DC.

[18] Yeoman KH, Delgado MJ, Wexler M, Downie JA and Johnston AWB., 1997. High affinity iron acquisition in Rhizobium leguminosarum requires the cycHJKL operon and the feuPQ gene products, which belong to the family of two-component transcriptional regulators. Microbiology. 143, 127-134.

[19] Dorrell N, Spencer S, Foulonge V, Guigue-Talet P, O'Callaghan D, Wren BW., 1998. Identification, cloning and initial characterisation of FeuPQ in Brucella suis: a new sub-family of two-component. FEMS Microbiol Lett. May 1;162(1):143-50.

[20] Griffitts JS, Carlyon RE, Erickson JH, Moulton JL, Barnett MJ, Toman CJ, Long SR., 2008. A Sinorhizobium meliloti osmosensory two-component system required for cyclic glucan export and symbiosis. Mol Microbiol. 69:479–490.

[21] Thompson JD, Higgins DG, and Gibson TJ., 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673–4680.

[22] Tamura K, Stecher G, Peterson D, Filipski A, and Kumar S., 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution. 30: 2725-2729.

[23] Brown JKM., 1994. Bootstrap hypothesis tests for evolutionary trees and other dendrograms. Proc. Natl. Acad. Sci. USA. 91:12293–12297.

[24] Tamura K, Nei M, and Kumar S., 2004. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Natl. Acad. Sci. USA. 101:11030-11035.

[25] Tamura K, and Kumar S., 2002. Evolutionary distance estimation under heterogeneous substitution pattern among lineages. Molecular Biology and Evolution. 19:1727-1736.

[26] Saitou N, and Nei M., 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution. 4:406-425.

[27] Kimura M., 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution. 16:111-120.

[28] Nei M, and Kumar S., 2000. Molecular Evolution and Phylogenetics. Oxford University Press, New York.

[29] Jones DT, Taylor WR, and Thornton JM., 1992. The rapid generation of mutation data matrices from protein sequences. Computer Applications in the Biosciences. 8: 275-282.