IJSTR

International Journal of Scientific & Technology Research

Home About Us Scope Editorial Board Blog/Latest News Contact Us
0.2
2019CiteScore
 
10th percentile
Powered by  Scopus
Scopus coverage:
Nov 2018 to May 2020

CALL FOR PAPERS
AUTHORS
DOWNLOADS
CONTACT

IJSTR >> Volume 3- Issue 11, November 2014 Edition



International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616



Stomatal Performance Of Soybean Genotypes Due To Drought Stress And Acidity

[Full Text]

 

AUTHOR(S)

Rini Widiati, Yunus Musa, Ambo Ala, Muh. Farid Bdr

 

KEYWORDS

Index Terms: variability, genotype, stress, indicators, soybean

 

ABSTRACT

Abstract: This research aims to classify soybean genotypes tolerant and susceptible to drought and acidity and to determine level of water content and observation parameters which can be used as an indicator of genotypes selection againts drought stress and acidity. The results are expected to give contribution in the development of soybean plants on acid dry land. Research was carried out as experimental study using a Split Plot design (SPD) with soil moisture levels (k) as main plot (MP) and soybean genotypes (g) as sub plot (SP). The soil moisture levelswere set based on the percentage of soil water content consisted of four levels e.g. 100% field capacity (k0), 80-100% field capacity (k1), 60-80% of field capacity (k2), 40-60% of field capacity (k3). Soybean genotypesused as the sub plot were g1 (variety Menyapa, 50 Gy); g2 (var. Orba, 25 Gy); g3 (var. Tanggamus, 0 Gy); g4 (var. Tanggamus, 25 Gy); g5 (var. Tanggamus, 50 Gy); g6 (var. Orba, 50 Gy); g7 (var. Menyapa, 0 Gy) and g8 (var. Orba, 0 Gy). A total of 32 teratment combination was obtained and planted on acid dry land. The data was analyzed using statistical software (Excel). Study results indicate that 1) genotype tolerant to drought and acidity were g1 (var. Menyapa, 50 Gy); g2 (var. Orba, 25 Gy); g3 (var. Tanggamus, 0 Gy); g4 (var. Tanggamus, 25 Gy); g5 (var. Tanggamus, 50 Gy); 75Gy) and g6 (var. Orba, 50 Gy), while sensitive genotypes were g7 (var.Menyapa, 0 Gy) and g8 (var. Orba, 0 Gy); 2) soil moisture content of 40-60% field capacity can be used an indicator of resistance to drought and acidity; 3) The parameter of the root volume, length of stomata, stomatal pore width, number of stomata and relative chlorophyll index can be used as an indicator of selection for soybean genotypes againts drought stress and acidity.

 

REFERENCES

[1] BPS, 2014. Laporan Bulanan Data Social Ekonomi (Monthly Report of Social Economic Data) , Badan Pusat Statistik, Edisi 49 Maret 2014.

[2] Mulyani, A., Rachman, A., Dairah, A. 2009. Penyebaran Lahan Masam, Potensi dan Ketersediaannya Untuk Pengembangan Pertanian. Acid Land Spreading, Potential and its availability for Agricultural Development.

[3] Mulyani, A. 2006. Potensi Lahan Kering Masam Untuk Pengembangan Pertanian.Potential for Acid Drylandfor Agriculture Development. Jurnal Warta Penelitian dan Pengembangan Pertanian vol. 28 No. 2.

[4] Utama, M.Z.H. 2008. Mekanisme fisiologi toleransi cekaman aluminium pada spesies legum penutup tanah terhadapmetabolisme nitrat, amonium dan nitrit (Physiological Mechanism in tolerant to Al stress in legume cover crop on nitrat, ammonium and nitrit metabolism). Bul. Agron. 36:175-179.

[5] Ma, J.F., R.R. Peter, & D. Emmanuel. 2001. Aluminium tolerance in plants and the complexing role of organic acids. Trends in Plant Sci. 6 (6): 273– 276.

[6] Sutjahjo S. H. 2006. Seleksi in vitro untuk ketenggangan terhadap Aluminium pada empat genotype jagung. (In vitro Selection of tolerance to Aluminium of four Maize genotypes). Akta Agrosia 9 (2): 61-66.

[7] Hede, A.R., B. Skovmand dan J. Lopez-Cesati. 2007. Acid soil and Aluminium toxicity. Chapter 15. CIMMYT Wheat Program, CIMMYT Soil and Plant Nutrition Laboratory. pp. 172-182.

[8] Budiarti, S.G., T.S. Silitonga, T. Suhartini, Sutoro, Asadi, dan Hadiatmi. 2004. Evaluasi toleransi plasma nutfah padi, jagung, dan kedelai terhadap lahan bermasalah/lahan masam (keracunan Al dan Fe) dan pemupukan rendah (Evaluation of the tolerance of rice, corn, and soybeans germplasmson marginal land / acid land (toxicity of Al and Fe) and low fertilization). Kumpulan Makalah Seminar Hasil Penelitian BB-Biogen Tahun 2004. Hlm.51-61.

[9] Rusman, Sutiasumarga. 1991. Aneka Pustaka. Jakarta ; Balai Pustaka

[10] Blum A. 2005. Drought resistance, water-use efficiency, and yield potential—are they compatible, dissonant, or mutually ex-clusive?. Aus. Agri. Research, 56: 1159–1168.

[11] Hanum, C., Mugnisjah, W.Q., Yahya, S., Sopansie, D., Idris, K., dan Sahar, A. 2009. Penapisan Kedelai Toleran Cekaman Aluminium dan Kekeringan (Screening of Soybean Tolerant to Aluminium and Drought Stress). Forum Pascasarjana Vol. 32 No; 4 Oktober 2009: 295-305.

[12] Cambell et al, 2003. Biologi Jilid 2. Jakarta. Erlangga

[13] Hanum, C., W.Q. Muqnisjah, S. Yahya, D.Sopandy, K. Idris, dan A..Sahar.2007. PertumbuhanAkarKedelaipadaCekamanAluminium,KekeringandanCekamanGandaAluminiumdanKekeringan (Soybean Root Growth in Aluminum and Drought Stress and Dual Stress of Drought and Aluminum).JurnalAgritrop, 26 (1) : 13 – 18.

[14] Robert W. 2004. Recognizing Water Stress in Plant. The Arboretum at Flagstaff Extension Bulletin No.91- 01http:www.thearb.org/water_stress.htm. 3p

[15] Wu Y. and D.J. Cosgrove. 2000. Adaptation of root to low water potentials by changes in cell wall extensibility and cell wall proteins. J. Exper. Botany (51):1543-1553.

[16] Hamdy M. 2002. Employment of maize immature embryo culture for improving drought tolerance. In : Proceeding of the 3rd Scientific Conference of Agriculture Sciences, Fac. of Agric., Assiut Univ., Assiut, Egypt, 20-22. October. 2002, pp. 463-477.

[17] Ojo dan Ayuba., Screening of tropically adapted genotypes of soybean (Glycine max (L.) Merrill) for aluminium stress tolerance in short-term hydroponics. Journal of Animal & Plant Sciences, 2012. Vol. 14, Issue 2: 1921-1930 (2012).

[18] Rengel, Z. 2000. Mineral Nutrition of Crops, Fundamental Mechanisms and Implications. Food Products Press. Binghamton, New York.

[19] Utama, dkk. 2009. Mekanisme fisiologi toleransi terhadap cekaman salinitas dan Al pada spesies legum penutup tanah (Physiological Mechanism tolerant to salinity and Al stress in legume cover crop). Jur. Stigma XII (2):186-191.

[20] Samac DA, Tesfaye M. 2003. Plat improvemnt for tolerance to aluminum in acid soil _a_review. Plat Cell Tissue Organ Cult 75 : 189-207

[21] Bakhtiar, Purwoko BS, Trikoesoemaningtyas, Dewi IS. 2009. Konstribusi akumulasi silikat, nitrogen dan aluminium terhadap ketenggangan aluminium dan ketahanan terhadap penyakit blas pada padi gogo (Contribution of silikat, nitrogen and aluminium accumulation on tolerance against aluminium and resistance to blast disease of upland rice). Agron. Indonesia 37 : 194 – 201

[22] Lestari E.G. 2006.Hubungan antara Kerapatan Stomata dengan KetahananKekeringan pada Somaklon Padi Gajahmungkur, Towuti, dan IR 64. (The relationship between stomataldensity and tolerance of Rice somacloneGajahmungkur, Towuti, and IR 64againts drought).Jurnal Biodiversitas Vol 7, No 1 :44-48 ISSN: 1412-033X

[23] Dickison, W.C. 2000. Integrative Plant Anatomy . New York: John Wiley & Sons.

[24] Taiz L. and ZeigerE. 2010. Plant Physiology, Fifth Edition on line, Created by Sinauer Associates Inc

[25] Makbul SN, Saruhan Guler N, Durmus N, Guven S. 2011. Changes in anatomical and physiological parameters of soybean under drought stress Turk J Bot. 35:369-377.

[26] Proklamirsininsih, E., Prijambada , I.D., Rachmawati, D., Sancayaningsih, R. 2012. Laju Fotosintesis dan Kandungan Klorofil Kedelai pada Media Tanam Masam dengan Pemberian Garam Aluminium. (The rate of Photosynthesis and Chlorophyll Content in Acid Growing Media of Soybean with application of Aluminum Salts. AGROTROP, 2(1): 17-24. ISSN : 208 -155X.

[27] Chen, L.S., Qi, Y.P., Smith, B.R. & Liu, X.H.2005. Aluminum Induced Decrease inCO2 Assimilation in Citrus Seedlings is Unaccompanied by Decreased Activitiesof Key Enzymes Involved in CO2 Assimilation. Tree Physiol. 25: 317-324.

[28] Soverda, N.; Mapegau dan Destri, F. 2007. Pengaruh Berbagai Kadar Air Tanah Terhadap Pertumbuhan dan Hasil Tanaman Kedelai Yang Diberi Mikoriza Vesikular Arbuskular. (Effect of Different Soil Water Content on growth and production of Soybean Crop due to vesicular arbuscularMycorrhiza. Jurnal Agronomi Vol. 11 No. 2, Juli – Desember 2007

[29] Liu, F., Jensen, C.R., and Andersen, M.N. 2003. Drought Stress Effect on Carbohydrate Consentration and Pods During Early Reproductive Developed Pod Set. J. Crops Researh. 86 (10)

[30] Taiz, L. and E. Zeiger. 2002. Plant Physiology. Third Edition. Sinauer Associates Inc. Publisher. Sunderland, Massachusetts. 667 p

[31] Hopkins WG. 2004. Introduction to PlantPhysiology. New York: John Wiley & Sons. Inc.

[32] Shi, G.Y. 2004. Effect of Aluminium on Growth and Some Physiological Function of Rice
[33] Seedlings. Guihaia 24: 77-80.

[34] Kertesz, S., Fabian, A., Zsoldos, F., Vashegy, A.,Labady, I., Bona, L. & A. Pecsvaradi. 2002. Changes in glutamine synthetaseactivity in presence of aluminiumcomplexes. Proceedings of the 7th.Hungarian Congress on Plant Physiology,46: 103–104.