International Journal of Scientific & Technology Research

Home About Us Scope Editorial Board Blog/Latest News Contact Us
10th percentile
Powered by  Scopus
Scopus coverage:
Nov 2018 to May 2020


IJSTR >> Volume 9 - Issue 10, October 2020 Edition

International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616

An Overview Of Renewable Energy In Southeast Asia: Current Status And Future Target

[Full Text]



Erdiwansyah, Mahidin, R. Mamat, Muhammad Zaki, M.S.M. Sani, Hamdani, Muhibbuddin, K. Sudhakar, Jamsari Alias, Norazila Mat, N.A.C Sidik



Renewable energy, Potency, Target, Southeast Asia, Energy situation, Current status.



In the latest years, nations in Southeast Asia such as Singapore, Malaysia, Thailand, the Philippines and Indonesia have experienced significant economic growth. The tropical climate in the region enables the potential for using renewable and sustainable energies. This discussion provides an overview of the Southeast Asian region's renewable energy resources like solar energy, wind power, geothermal, hydropower, biomass, by considering their national resource potential. This study also discusses the present and future energy demands, renewable energy targets and economic perspectives. However, the energy potency cannot be managed optimally, because it is hampered by several challenges to fulfil the nations’ renewable energy’s target. The present reorganization of traditional energy utilities to introduce renewable energy systems will have a tremendous effect on the region's social, political and environmental circumstances.



[1] M.A.J.R. Quirapas, H. Lin, M.L.S. Abundo, S. Brahim, D. Santos, Ocean renewable energy in Southeast Asia: A review, Renew. Sustain. Energy Rev. 41 (2015) 799–817. doi:10.1016/j.rser.2014.08.016.
[2] J.P. Delahaye, C. Ankenbrandt, A. Bogacz, S. Brice, A. Bross, D. Denisov, E. Eichten, P. Huber, D.M. Kaplan, H. Kirk, Enabling Intensity and Energy Frontier Science with a Muon Accelerator Facility in the US: A White Paper Submitted to the 2013 US Community Summer Study of the Division of Particles and Fields of the American Physical Society, ArXiv Prepr. ArXiv1308.0494. (2013).
[3] S. Heinonen, M. Parkkinen, J. Karjalainen, J. Ruotsalainen, Energising Peer-to-peer Urban Futures - Challenges for Urban Governance, Procedia Eng. 198 (2017) 267–282. doi:10.1016/j.proeng.2017.07.160.
[4] B.K. Sovacool, I.M. Drupady, Examining the small renewable energy power (SREP) program in Malaysia, Energy Policy. 39 (2011) 7244–7256. doi:10.1016/j.enpol.2011.08.045.
[5] J.O. Petinrin, M. Shaaban, Renewable energy for continuous energy sustainability in Malaysia, Renew. Sustain. Energy Rev. 50 (2015) 967–981. doi:10.1016/j.rser.2015.04.146.
[6] IEA, Renewable Policy Update, Renew. Policy Updat. (2017) 16. https://www.iea.org/media/topics/renewables/repolicyupdate/REDRenewablePolicyUpdateNo1320170207_FINAL.pdf.
[7] S. Robertsson, Southeast Asian Solar : Market Outlook and Policy Overview Introduction to The Lantau Group, (2017).
[8] IEE, Asia / World Energy Outlook, (2016). https://www.bp.com/content/dam/bp/pdf/energy-economics/energy-outlook-2016/bp-energy-outlook-2016.pdf.
[9] M. Renner, B. Parajuli, B. Franceschini, S. Lozo, J. Jungmin Lee, C. Strinati, T. Rinke, M. Taylor, A. Ilas, J. Estima, A. Oricha Ali, A. Khalid, J. Curtis, T. Raassina, Renewable Energy Market Analysis: Southeast Asia, n.d. http://www.irena.org/-/media/Files/IRENA/Agency/Publication/2018/Jan/IRENA_Market_Southeast_Asia_2018.pdf.
[10] Erdiwansyah, R. Mamat, M.S.M. Sani, K. Sudhakar, Renewable energy in Southeast Asia: Policies and recommendations, Sci. Total Environ. (2019). doi:https://doi.org/10.1016/j.scitotenv.2019.03.273.
[11] A. Rahmadi, H. Hanifah, H. Kuntjara, Asean Briefs, 2 (2017).
[12] International Energy Agency (IEA), Southeast Asia Energy Outlook, World Energy Outlook Spec. Rep. (2015) 131. doi:10.1787/weo-2013-en.
[13] J. Conti, P. Holtberg, J. Diefenderfer, A. LaRose, J.T. Turnure, L. Westfall, International energy outlook 2016 with projections to 2040, USDOE Energy Information Administration (EIA), Washington, DC (United States). Office of Energy Analysis, 2016.
[14] ESDM, Indonesia Energy Out Look 2019, J. Chem. Inf. Model. 53 (2019) 1689–1699. doi:10.1017/CBO9781107415324.004.
[15] M.A.A. Farid, A.M. Roslan, M.A. Hassan, M.Y. Hasan, M.R. Othman, Y. Shirai, Net energy and techno-economic assessment of biodiesel production from waste cooking oil using a semi-industrial plant: A Malaysia perspective, Sustain. Energy Technol. Assessments. 39 (2020) 100700. doi:https://doi.org/10.1016/j.seta.2020.100700.
[16] M. Mofijur, H.H. Masjuki, M.A. Kalam, M.A. Hazrat, A.M. Liaquat, M. Shahabuddin, M. Varman, Prospects of biodiesel from Jatropha in Malaysia, Renew. Sustain. Energy Rev. 16 (2012) 5007–5020. doi:https://doi.org/10.1016/j.rser.2012.05.010.
[17] A. Johari, B.B. Nyakuma, S.H. Mohd Nor, R. Mat, H. Hashim, A. Ahmad, Z. Yamani Zakaria, T.A. Tuan Abdullah, The challenges and prospects of palm oil based biodiesel in Malaysia, Energy. 81 (2015) 255–261. doi:https://doi.org/10.1016/j.energy.2014.12.037.
[18] U. Jaroenkietkajorn, S.H. Gheewala, Interlinkage between water-energy-food for oil palm cultivation in Thailand, Sustain. Prod. Consum. 22 (2020) 205–217. doi:https://doi.org/10.1016/j.spc.2020.03.006.
[19] T. Silalertruksa, S. Bonnet, S.H. Gheewala, Life cycle costing and externalities of palm oil biodiesel in Thailand, J. Clean. Prod. 28 (2012) 225–232. doi:https://doi.org/10.1016/j.jclepro.2011.07.022.
[20] H. Uehara, C.O. Dilao, T. Nakaoka, Conceptual design of ocean thermal energy conversion (OTEC) power plants in the Philippines, Sol. Energy. 41 (1988) 431–441. doi:https://doi.org/10.1016/0038-092X(88)90017-5.
[21] ASEAN Centre for Energy, The 4th ASEAN Energy Outlook 2013-2035, (2015) 1–100. doi:10.1017/CBO9781107415324.004.
[22] IRENA, ACE, Renewable Energy Outlook for ASEAN, 2016.
[23] V. Kosorić, H. Huang, A. Tablada, S.-K. Lau, H.T.W. Tan, Survey on the social acceptance of the productive façade concept integrating photovoltaic and farming systems in high-rise public housing blocks in Singapore, Renew. Sustain. Energy Rev. 111 (2019) 197–214. doi:https://doi.org/10.1016/j.rser.2019.04.056.
[24] H. Tong, Z. Yao, J.W. Lim, L. Mao, J. Zhang, T.S. Ge, Y.H. Peng, C.-H. Wang, Y.W. Tong, Harvest green energy through energy recovery from waste: A technology review and an assessment of Singapore, Renew. Sustain. Energy Rev. 98 (2018) 163–178. doi:https://doi.org/10.1016/j.rser.2018.09.009.
[25] IEA, 2018 World Energy Outlook: Executive Summary, Oecd/Iea. (2018) 11.
[26] IRENA, ACE, Renewable Energy Outlook for ASEAN, 2016. doi:10.13140/RG.2.2.11551.15520.
[27] International Renewable Energy Agency (IRENA), REmap: Roadmap for a Renewable Energy Future, Irena. (2016).
[28] X. Shi, The future of ASEAN energy mix : A SWOT analysis, Renew. Sustain. Energy Rev. 53 (2016) 672–680. doi:10.1016/j.rser.2015.09.010.
[29] L. Li, S. You, X. Wang, Optimal Design of Standalone Hybrid Renewable Energy Systems with Biochar Production in Remote Rural Areas: A Case Study, Energy Procedia. 158 (2019) 688–693. doi:https://doi.org/10.1016/j.egypro.2019.01.185.
[30] T.-H. Le, Y. Chang, F. Taghizadeh-Hesary, N. Yoshino, Energy insecurity in Asia: A multi-dimensional analysis, Econ. Model. 83 (2019) 84–95. doi:https://doi.org/10.1016/j.econmod.2019.09.036.
[31] P. Bertheau, J. Dionisio, C. Jütte, C. Aquino, Challenges for implementing renewable energy in a cooperative-driven off-grid system in the Philippines, Environ. Innov. Soc. Transitions. (2019). doi:https://doi.org/10.1016/j.eist.2019.03.002.
[32] X. Le Lim, W.H. Lam, R. Hashim, Feasibility of marine renewable energy to the Feed-in Tariff system in Malaysia, Renew. Sustain. Energy Rev. 49 (2015) 708–719. doi:10.1016/j.rser.2015.04.074.
[33] M.S. Umar, P. Jennings, T. Urmee, Generating renewable energy from oil palm biomass in Malaysia: The Feed-in Tariff policy framework, Biomass and Bioenergy. 62 (2014) 37–46. doi:https://doi.org/10.1016/j.biombioe.2014.01.020.
[34] S. Tongsopit, C. Greacen, An assessment of Thailand’s feed-in tariff program, Renew. Energy. 60 (2013) 439–445. doi:https://doi.org/10.1016/j.renene.2013.05.036.
[35] B. Bakhtyar, K. Sopian, A. Zaharim, E. Salleh, C.H. Lim, Potentials and challenges in implementing feed-in tariff policy in Indonesia and the Philippines, Energy Policy. 60 (2013) 418–423. doi:https://doi.org/10.1016/j.enpol.2013.05.034.
[36] A.M. Fathoni, N.A. Utama, M.A. Kristianto, A Technical and Economic Potential of Solar Energy Application with Feed-in Tariff Policy in Indonesia, Procedia Environ. Sci. 20 (2014) 89–96. doi:https://doi.org/10.1016/j.proenv.2014.03.013.
[37] K. Kanchana, B.C. McLellan, H. Unesaki, Energy dependence with an Asian twist? Examining international energy relations in Southeast Asia, Energy Res. Soc. Sci. 21 (2016) 123–140. doi:10.1016/j.erss.2016.07.003.
[38] M.D. Fortes, Seagrass ecosystem conservation in Southeast Asia needs to link science to policy and practice, Ocean Coast. Manag. (2018) 0–1. doi:10.1016/j.ocecoaman.2018.01.028.
[39] R. Silberglitt, S. Kimmel, Energy scenarios for Southeast Asia, Technol. Forecast. Soc. Change. 101 (2015) 251–262. doi:10.1016/j.techfore.2015.04.010.
[40] Mahidin, Saifullah, Erdiwansyah, Hamdani, Hisbullah, A.P. Hayati, M. Zhafran, M.A. Sidiq, A. Rinaldi, B. Fitria, R. Tarisma, Y. Bindar, Analysis of power from palm oil solid waste for biomass power plants: A case study in Aceh Province, Chemosphere. (2020) 126714. doi:https://doi.org/10.1016/j.chemosphere.2020.126714.
[41] V. Nian, M.P. Hari, Incentivizing the Adoption of Nuclear and Renewable Energy in Southeast Asia, Energy Procedia. 105 (2017) 3683–3689. doi:10.1016/j.egypro.2017.03.849.
[42] S.R. Behera, D.P. Dash, The effect of urbanization, energy consumption, and foreign direct investment on the carbon dioxide emission in the SSEA (South and Southeast Asian) region, Renew. Sustain. Energy Rev. 70 (2017) 96–106. doi:10.1016/j.rser.2016.11.201.
[43] Z. Wang, Strategic path of China’s low-carbon technology development, Procedia Environ. Sci. 8 (2011) 90–96. doi:10.1016/j.proenv.2011.10.016.
[44] G. Rajgor, Asian interest in tidal grows, Renew. Energy Focus. 19–20 (2017) 124–128. doi:10.1016/j.ref.2017.03.004.
[45] C.T. Lee, J.S. Lim, Y. Van Fan, X. Liu, T. Fujiwara, J.J. Klemeš, Enabling low-carbon emissions for sustainable development in Asia and beyond, J. Clean. Prod. 176 (2018) 726–735. doi:10.1016/j.jclepro.2017.12.110.
[46] A. Phdungsilp, T. Wuttipornpun, Analyses of the decarbonizing Thailand’s energy system toward low-carbon futures, Renew. Sustain. Energy Rev. 24 (2013) 187–197. doi:10.1016/j.rser.2013.03.050.
[47] E. Luczko, B. Robertson, H. Bailey, C. Hiles, B. Buckham, Representing non-linear wave energy converters in coastal wave models, Renew. Energy. 118 (2018) 376–385. doi:10.1016/j.renene.2017.11.040.
[48] G. Tampier, L. Grueter, Hydrodynamic analysis of a heaving wave energy converter, Int. J. Mar. Energy. 19 (2017) 304–318. doi:10.1016/j.ijome.2017.08.007.
[49] X. Yin, A novel hydro-kite like energy converter for harnessing both ocean wave and current energy, Energy. (2018). doi:10.1016/j.energy.2018.03.121.
[50] J. Leijon, C. Boström, Freshwater production from the motion of ocean waves – A review, Desalination. 435 (2018) 161–171. doi:10.1016/j.desal.2017.10.049.
[51] A. Ali, R.A. Tufa, F. Macedonio, E. Curcio, E. Drioli, Membrane technology in renewable-energy-driven desalination, Renew. Sustain. Energy Rev. 81 (2018) 1–21. doi:10.1016/j.rser.2017.07.047.
[52] T. Ahmed, S. Mekhilef, R. Shah, N. Mithulananthan, M. Seyedmahmoudian, B. Horan, ASEAN power grid: A secure transmission infrastructure for clean and sustainable energy for South-East Asia, Renew. Sustain. Energy Rev. 67 (2017) 1420–1435. doi:10.1016/j.rser.2016.09.055.
[53] T.H. Ng, J.Y. Tao, Bond financing for renewable energy in Asia, Energy Policy. 95 (2016) 509–517. doi:10.1016/j.enpol.2016.03.015.
[54] S. Kumar, Assessment of renewables for energy security and carbon mitigation in Southeast Asia: The case of Indonesia and Thailand, Appl. Energy. 163 (2016) 63–70. doi:10.1016/j.apenergy.2015.11.019.
[55] A.M. Aguirre-Mendoza, C. Díaz-Mendoza, J. Pasqualino, Renewable energy potential analysis in non-interconnected islands. Case study: Isla Grande, Corales del Rosario Archipelago, Colombia, Ecol. Eng. (2017) 0–1. doi:10.1016/j.ecoleng.2017.08.020.
[56] C. Zhang, A. Romagnoli, J.Y. Kim, A.A.M. Azli, S. Rajoo, A. Lindsay, Implementation of industrial waste heat to power in Southeast Asia: an outlook from the perspective of market potentials, opportunities and success catalysts, Energy Policy. 106 (2017) 525–535. doi:10.1016/j.enpol.2017.03.041.
[57] Y.S. Mohammed, M.W. Mustafa, N. Bashir, I.S. Ibrahem, Existing and recommended renewable and sustainable energy development in Nigeria based on autonomous energy and microgrid technologies, Renew. Sustain. Energy Rev. 75 (2017) 820–838.
[58] W.W.F. Chong, J.H. Ng, S. Rajoo, C.T. Chong, Passenger transportation sector gasoline consumption due to friction in Southeast Asian countries, Energy Convers. Manag. 158 (2018) 346–358. doi:10.1016/j.enconman.2017.12.083.
[59] M.W. Morley, The geoarchaeology of hominin dispersals to and from tropical Southeast Asia: A review and prognosis, J. Archaeol. Sci. 77 (2017) 78–93. doi:10.1016/j.jas.2016.07.009.
[60] G. Notton, M.-L. Nivet, C. Voyant, C. Paoli, C. Darras, F. Motte, A. Fouilloy, Intermittent and stochastic character of renewable energy sources: Consequences, cost of intermittence and benefit of forecasting, Renew. Sustain. Energy Rev. 87 (2018) 96–105.
[61] L. Noel, The hidden economic benefits of large-scale renewable energy deployment: integrating heat, electricity and vehicle systems, Energy Res. Soc. Sci. 26 (2017) 54–59.
[62] the European Commission, Renewable energy prospects for the European Union: Preview for policy makers, 2018. https://www.connaissancedesenergies.org/sites/default/files/pdf-pt-vue/irena_remap_eu_2018.pdf.
[63] F. Schuenemann, S. Msangi, M. Zeller, Policies for a Sustainable Biomass Energy Sector in Malawi: Enhancing Energy and Food Security Simultaneously, World Dev. 103 (2018) 14–26. doi:10.1016/j.worlddev.2017.10.011.
[64] A. Shahsavari, M. Akbari, Potential of solar energy in developing countries for reducing energy-related emissions, Renew. Sustain. Energy Rev. 90 (2018) 275–291. doi:10.1016/j.rser.2018.03.065.
[65] B.K. Sovacool, A comparative analysis of renewable electricity support mechanisms for Southeast Asia, Energy. 35 (2010) 1779–1793. doi:10.1016/j.energy.2009.12.030.
[66] R.M. Plaza, A blue energy option for the Mekong River Basin. An international law analysis on Asian regional cooperation in pioneer osmotic power projects, Sustain. Energy Technol. Assessments. 25 (2018) 75–98. doi:10.1016/j.seta.2017.11.002.
[67] X. Liu, S. Zhang, J. Bae, The impact of renewable energy and agriculture on carbon dioxide emissions: Investigating the environmental Kuznets curve in four selected ASEAN countries, J. Clean. Prod. 164 (2017) 1239–1247. doi:10.1016/j.jclepro.2017.07.086.
[68] B. Bakhtyar, K. Sopian, M.Y. Sulaiman, S.A. Ahmad, Renewable energy in five South East Asian countries: Review on electricity consumption and economic growth, Renew. Sustain. Energy Rev. 26 (2013) 506–514. doi:10.1016/j.rser.2013.05.058.
[69] X. Le Lim, W.H. Lam, Public acceptance of marine renewable energy in Malaysia, Energy Policy. 65 (2014) 16–26. doi:10.1016/j.enpol.2013.09.053.
[70] D. Khojasteh, D. Khojasteh, R. Kamali, A. Beyene, G. Iglesias, Assessment of renewable energy resources in Iran; with a focus on wave and tidal energy, Renew. Sustain. Energy Rev. 81 (2018) 2992–3005. doi:10.1016/j.rser.2017.06.110.
[71] M. Lange, G. Page, V. Cummins, Governance challenges of marine renewable energy developments in the U.S. – Creating the enabling conditions for successful project development, Mar. Policy. 90 (2018) 37–46. doi:10.1016/j.marpol.2018.01.008.
[72] M. Graziano, S.L. Billing, J.O. Kenter, L. Greenhill, A transformational paradigm for marine renewable energy development, Energy Res. Soc. Sci. 23 (2017) 136–147. doi:10.1016/j.erss.2016.10.008.
[73] M. Zeyringer, B. Fais, I. Keppo, J. Price, The potential of marine energy technologies in the UK – Evaluation from a systems perspective, Renew. Energy. 115 (2018) 1281–1293. doi:10.1016/j.renene.2017.07.092.
[74] A.J. Chapman, B.C. McLellan, T. Tezuka, Prioritizing mitigation efforts considering co-benefits, equity and energy justice: Fossil fuel to renewable energy transition pathways, Appl. Energy. 219 (2018) 187–198.
[75] E. Kabir, P. Kumar, S. Kumar, A.A. Adelodun, K.-H. Kim, Solar energy: Potential and future prospects, Renew. Sustain. Energy Rev. 82 (2018) 894–900.
[76] M.R. Borovik, J.D. Albers, Participation in the Illinois solar renewable energy market, Electr. J. 31 (2018) 33–39.
[77] L. Cuadra, S. Salcedo-Sanz, J.C. Nieto-Borge, E. Alexandre, G. Rodríguez, Computational intelligence in wave energy: Comprehensive review and case study, Renew. Sustain. Energy Rev. 58 (2016) 1223–1246. doi:10.1016/j.rser.2015.12.253.
[78] Z. Yang, V.S. Neary, T. Wang, B. Gunawan, A.R. Dallman, W.C. Wu, A wave model test bed study for wave energy resource characterization, Renew. Energy. 114 (2017) 132–144. doi:10.1016/j.renene.2016.12.057.
[79] P. Ahmadi, I. Dincer, M.A. Rosen, Multi-objective optimization of an ocean thermal energy conversion system for hydrogen production, Int. J. Hydrogen Energy. 40 (2015) 7601–7608. doi:10.1016/j.ijhydene.2014.10.056.
[80] M.R.D. Quitoras, M.L.S. Abundo, L.A.M. Danao, A techno-economic assessment of wave energy resources in the Philippines, Renew. Sustain. Energy Rev. 88 (2018) 68–81. doi:10.1016/j.rser.2018.02.016.
[81] K. Aroonrat, S. Wongwises, Current status and potential of hydro energy in Thailand: A review, Renew. Sustain. Energy Rev. 46 (2015) 70–78. doi:10.1016/j.rser.2015.02.010.
[82] D. Gielen, D. Saygen, J. Ritger, Renewable Energy prospects: Indonesia, 2017. https://www.britishgas.co.uk/business/gas-and-electricity/renewable-energy.
[83] I. Renewable Energy Agency, Renewable Energy Outlook: Thailand, n.d. http://irena.org/-/media/Files/IRENA/Agency/Publication/2017/Nov/IRENA_Outlook_Thailand_2017.pdf.
[84] S. Kerr, L. Watts, J. Colton, F. Conway, A. Hull, K. Johnson, S. Jude, A. Kannen, S. MacDougall, C. McLachlan, T. Potts, J. Vergunst, Establishing an agenda for social studies research in marine renewable energy, Energy Policy. 67 (2014) 694–702. doi:10.1016/j.enpol.2013.11.063.
[85] F. Morni, A. Lahsasna, A Value Proposition Towards Better Performance of Financial Lease Contracts in Islamic Banks, (n.d.).
[86] F. Behrouzi, M. Nakisa, A. Maimun, Y.M. Ahmed, Renewable energy potential in Malaysia: Hydrokinetic river/marine technology, Renew. Sustain. Energy Rev. 62 (2016) 1270–1281. doi:10.1016/j.rser.2016.05.020.
[87] N. Izadyar, H.C. Ong, W.T. Chong, J.C. Mojumder, K.Y. Leong, Investigation of potential hybrid renewable energy at various rural areas in Malaysia, J. Clean. Prod. 139 (2016) 61–73.
[88] R. Kardooni, S.B. Yusoff, F.B. Kari, Renewable energy technology acceptance in Peninsular Malaysia, Energy Policy. 88 (2016) 1–10.
[89] N.F. Yah, A.N. Oumer, M.S. Idris, Small scale hydro-power as a source of renewable energy in Malaysia: A review, Renew. Sustain. Energy Rev. 72 (2017) 228–239. doi:10.1016/j.rser.2017.01.068.
[90] C. Yang, S. Yeh, S. Zakerinia, K. Ramea, D. McCollum, Achieving California’s 80% greenhouse gas reduction target in 2050: Technology, policy and scenario analysis using CA-TIMES energy economic systems model, Energy Policy. 77 (2015) 118–130. doi:10.1016/j.enpol.2014.12.006.
[91] T.H. Oh, M. Hasanuzzaman, J. Selvaraj, S.C. Teo, S.C. Chua, Energy policy and alternative energy in Malaysia: Issues and challenges for sustainable growth – An update, Renew. Sustain. Energy Rev. 81 (2018) 3021–3031. doi:10.1016/j.rser.2017.06.112.
[92] P.H. Shaikh, N.B.M. Nor, A.A. Sahito, P. Nallagownden, I. Elamvazuthi, M.S. Shaikh, Building energy for sustainable development in Malaysia: A review, Renew. Sustain. Energy Rev. 75 (2017) 1392–1403. doi:10.1016/j.rser.2016.11.128.
[93] R. Kardooni, S.B. Yusoff, F.B. Kari, L. Moeenizadeh, Public opinion on renewable energy technologies and climate change in Peninsular Malaysia, Renew. Energy. 116 (2018) 659–668.
[94] Y. Sugiawan, S. Managi, The environmental Kuznets curve in Indonesia: Exploring the potential of renewable energy, Energy Policy. 98 (2016) 187–198. doi:10.1016/j.enpol.2016.08.029.
[95] K. Dong, R. Sun, H. Jiang, X. Zeng, CO2 emissions, economic growth, and the environmental Kuznets curve in China: What roles can nuclear energy and renewable energy play?, J. Clean. Prod. 196 (2018) 51–63. doi:https://doi.org/10.1016/j.jclepro.2018.05.271.
[96] A. Sinha, M. Shahbaz, D. Balsalobre, Exploring the relationship between energy usage segregation and environmental degradation in N-11 countries, J. Clean. Prod. 168 (2017) 1217–1229. doi:https://doi.org/10.1016/j.jclepro.2017.09.071.
[97] Z.M.A. Bundhoo, Renewable energy exploitation in the small island developing state of Mauritius: Current practice and future potential, Renew. Sustain. Energy Rev. (2017).
[98] A. Sagastume Gutiérrez, J.J. Cabello Eras, D. Huisingh, C. Vandecasteele, L. Hens, The current potential of low-carbon economy and biomass-based electricity in Cuba. The case of sugarcane, energy cane and marabu (Dichrostachys cinerea) as biomass sources, J. Clean. Prod. 172 (2018) 2108–2122. doi:https://doi.org/10.1016/j.jclepro.2017.11.209.
[99] N.P. Purba, J. Kelvin, R. Sandro, S. Gibran, R.A.I. Permata, F. Maulida, M.K. Martasuganda, Suitable Locations of Ocean Renewable Energy (ORE) in Indonesia Region-GIS Approached, Energy Procedia. 65 (2015) 230–238. doi:10.1016/j.egypro.2015.01.035.
[100] N. Indrawan, S. Thapa, M.E. Wijaya, M. Ridwan, D.H. Park, The biogas development in the Indonesian power generation sector, Environ. Dev. 25 (2018) 85–99. doi:10.1016/j.envdev.2017.10.003.
[101] R. Pacudan, Feed-in tariff vs incentivized self-consumption: Options for residential solar PV policy in Brunei Darussalam, Renew. Energy. 122 (2018) 362–374. doi:10.1016/j.renene.2018.01.102.
[102] A. Ahmed, M.S. Abu Bakar, A.K. Azad, R.S. Sukri, T.M.I. Mahlia, Potential thermochemical conversion of bioenergy from Acacia species in Brunei Darussalam: A review, Renew. Sustain. Energy Rev. 82 (2018) 3060–3076. doi:10.1016/j.rser.2017.10.032.
[103] Erdiwansyah, R. Mamat, M.S.M. Sani, K. Sudhakar, A. Kadarohman, R.E. Sardjono, An overview of Higher alcohol and biodiesel as alternative fuels in engines, Energy Reports. 5 (2019) 467–479. doi:https://doi.org/10.1016/j.egyr.2019.04.009.
[104] V. Shabunko, C.M. Lim, S. Mathew, EnergyPlus models for the benchmarking of residential buildings in Brunei Darussalam, Energy Build. (2016).
[105] S.T. Bryant, K. Straker, C. Wrigley, The typologies of power: Energy utility business models in an increasingly renewable sector, J. Clean. Prod. 195 (2018) 1032–1046. doi:https://doi.org/10.1016/j.jclepro.2018.05.233.
[106] L.K. Heng, Bio Gas Plant Green Energy From Poultry Wastes In Singapore, Energy Procedia. 143 (2017) 436–441.
[107] B.R. Karthikeya, P.S. Negi, N. Srikanth, Wind resource assessment for urban renewable energy application in Singapore, Renew. Energy. 87 (2016) 403–414.
[108] T.R. Ayodele, A.S.O. Ogunjuyigbe, T.O. Amusan, Wind power utilization assessment and economic analysis of wind turbines across fifteen locations in the six geographical zones of Nigeria, J. Clean. Prod. 129 (2016) 341–349. doi:https://doi.org/10.1016/j.jclepro.2016.04.060.
[109] A. Quek, R. Balasubramanian, Life Cycle Assessment of Energy and Energy Carriers from Waste Matter – A Review, J. Clean. Prod. 79 (2014) 18–31. doi:https://doi.org/10.1016/j.jclepro.2014.05.082.
[110] X. Cui, B. Mohan, M.R. Islam, S.K. Chou, K.J. Chua, Energy saving potential of an air treatment system for improved building indoor air quality in Singapore, Energy Procedia. 143 (2017) 283–288.
[111] S. Narayan, N. Doytch, An investigation of renewable and non-renewable energy consumption and economic growth nexus using industrial and residential energy consumption, Energy Econ. 68 (2017) 160–176. doi:10.1016/j.eneco.2017.09.005.
[112] A. Pascale, T. Urmee, J. Whale, S. Kumar, Examining the potential for developing women-led solar PV enterprises in rural Myanmar, Renew. Sustain. Energy Rev. 57 (2016) 576–583.
[113] H. Kim, T.Y. Jung, Independent solar photovoltaic with Energy Storage Systems (ESS) for rural electrification in Myanmar, Renew. Sustain. Energy Rev. 82 (2018) 1187–1194. doi:10.1016/j.rser.2017.09.037.
[114] T.N. Sequeira, M.S. Santos, Renewable energy and politics: A systematic review and new evidence, J. Clean. Prod. 192 (2018) 553–568. doi:https://doi.org/10.1016/j.jclepro.2018.04.190.
[115] C. Ingrao, J. Bacenetti, A. Bezama, V. Blok, P. Goglio, E.G. Koukios, M. Lindner, T. Nemecek, V. Siracusa, A. Zabaniotou, D. Huisingh, The potential roles of bio-economy in the transition to equitable, sustainable, post fossil-carbon societies: Findings from this virtual special issue, J. Clean. Prod. 204 (2018) 471–488. doi:https://doi.org/10.1016/j.jclepro.2018.09.068.
[116] C. Zhan, M. de Jong, Financing eco cities and low carbon cities: The case of Shenzhen International Low Carbon City, J. Clean. Prod. 180 (2018) 116–125. doi:https://doi.org/10.1016/j.jclepro.2018.01.097.
[117] T.V. Kusumadewi, P. Winyuchakrit, P. Misila, B. Limmeechokchai, GHG Mitigation in Power Sector: Analyzes of Renewable Energy Potential for Thailand’s NDC Roadmap in 2030, Energy Procedia. 138 (2017) 69–74. doi:10.1016/j.egypro.2017.10.054.
[118] P. Pita, P. Chunark, B. Limmeechokchai, CO 2 Reduction Perspective in Thailand’s Transport sector towards 2030, Energy Procedia. 138 (2017) 635–640.
[119] T.V. Kusumadewi, B. Limmeechokchai, CO 2 Mitigation in Residential Sector in Indonesia and Thailand: Potential of Renewable Energy and Energy Efficiency, Energy Procedia. 138 (2017) 955–960.
[120] P. Misila, P. Winyuchakrit, P. Chunark, B. Limmeechokchai, GHG Mitigation Potentials of Thailand’s Energy Policies to Achieve INDC Target, Energy Procedia. 138 (2017) 913–918.
[121] K. Kunanuntakij, V. Varabuntoonvit, N. Vorayos, C. Panjapornpon, T. Mungcharoen, Thailand Green GDP assessment based on environmentally extended input-output model, J. Clean. Prod. 167 (2017) 970–977. doi:https://doi.org/10.1016/j.jclepro.2017.02.106.
[122] F. Roxas, A. Santiago, Alternative framework for renewable energy planning in the Philippines, Renew. Sustain. Energy Rev. 59 (2016) 1396–1404.
[123] A. Sinha, M. Shahbaz, T. Sengupta, Renewable energy policies and contradictions in causality: A case of Next 11 countries, J. Clean. Prod. 197 (2018) 73–84. doi:https://doi.org/10.1016/j.jclepro.2018.06.219.
[124] J. Marquardt, K. Steinbacher, M. Schreurs, Driving force or forced transition?: The role of development cooperation in promoting energy transitions in the Philippines and Morocco, J. Clean. Prod. 128 (2016) 22–33. doi:https://doi.org/10.1016/j.jclepro.2015.06.080.
[125] M. Hak, Y. Matsuoka, K. Gomi, A qualitative and quantitative design of low-carbon development in Cambodia: Energy policy, Energy Policy. 100 (2017) 237–251. doi:10.1016/j.enpol.2016.10.017.
[126] M. Sarraf, B. Rismanchi, R. Saidur, H.W. Ping, N.A. Rahim, Renewable energy policies for sustainable development in Cambodia, Renew. Sustain. Energy Rev. 22 (2013) 223–229. doi:10.1016/j.rser.2013.02.010.
[127] U.K. Pata, Renewable energy consumption, urbanization, financial development, income and CO2 emissions in Turkey: Testing EKC hypothesis with structural breaks, J. Clean. Prod. 187 (2018) 770–779. doi:https://doi.org/10.1016/j.jclepro.2018.03.236.
[128] Q. Ali, M.T.I. Khan, M.N.I. Khan, Dynamics between financial development, tourism, sanitation, renewable energy, trade and total reserves in 19 Asia cooperation dialogue members, J. Clean. Prod. 179 (2018) 114–131. doi:10.1016/j.jclepro.2018.01.066.
[129] W. Promsen, S. Janjai, T. Tantalechon, An Analysis of Wind Energy Potential of Kampot Province, Southern Cambodia, Energy Procedia. 52 (2014) 633–641.
[130] S. Kudratova, X. Huang, X. Zhou, Sustainable project selection: Optimal project selection considering sustainability under reinvestment strategy, J. Clean. Prod. 203 (2018) 469–481. doi:https://doi.org/10.1016/j.jclepro.2018.08.259.
[131] R. Pode, B. Diouf, G. Pode, Sustainable rural electrification using rice husk biomass energy: A case study of Cambodia, Renew. Sustain. Energy Rev. 44 (2015) 530–542.
[132] J. Singh, Management of the agricultural biomass on decentralized basis for producing sustainable power in India, J. Clean. Prod. 142 (2017) 3985–4000. doi:https://doi.org/10.1016/j.jclepro.2016.10.056.
[133] E. Dogan, F. Seker, The influence of real output, renewable and non-renewable energy, trade and financial development on carbon emissions in the top renewable energy countries, Renew. Sustain. Energy Rev. 60 (2016) 1074–1085. doi:10.1016/j.rser.2016.02.006.
[134] B. Lin, R. Tan, China’s CO2 emissions of a critical sector: Evidence from energy intensive industries, J. Clean. Prod. 142 (2017) 4270–4281. doi:https://doi.org/10.1016/j.jclepro.2016.11.186.
[135] X. Liu, S. Zhang, J. Bae, The impact of renewable energy and agriculture on carbon dioxide emissions: Investigating the environmental Kuznets curve in four selected ASEAN countries, J. Clean. Prod. 164 (2017) 1239–1247. doi:https://doi.org/10.1016/j.jclepro.2017.07.086.
[136] N.T. Nguyen, M. Ha-Duong, Economic potential of renewable energy in Vietnam’s power sector, Energy Policy. 37 (2009) 1601–1613.
[137] G. Bandoc, R. Prăvălie, C. Patriche, M. Degeratu, Spatial assessment of wind power potential at global scale. A geographical approach, J. Clean. Prod. 200 (2018) 1065–1086. doi:https://doi.org/10.1016/j.jclepro.2018.07.288.
[138] C.F. Tang, B.W. Tan, I. Ozturk, Energy consumption and economic growth in Vietnam, Renew. Sustain. Energy Rev. 54 (2016) 1506–1514.
[139] P.T. Binh, Energy consumption and economic growth in Vietnam: threshold cointegration and causality analysis, Int. J. Energy Econ. Policy. 1 (2011) 1–17.
[140] B. Lin, I.N. Benjamin, Causal relationships between energy consumption, foreign direct investment and economic growth for MINT: Evidence from panel dynamic ordinary least square models, J. Clean. Prod. 197 (2018) 708–720. doi:https://doi.org/10.1016/j.jclepro.2018.06.152.
[141] N.A. Basri, A.T. Ramli, A.S. Aliyu, Malaysia energy strategy towards sustainability: A panoramic overview of the benefits and challenges, Renew. Sustain. Energy Rev. 42 (2015) 1094–1105. doi:10.1016/j.rser.2014.10.056.
[142] M. Sakah, F.A. Diawuo, R. Katzenbach, S. Gyamfi, Towards a sustainable electrification in Ghana: A review of renewable energy deployment policies, Renew. Sustain. Energy Rev. 79 (2017) 544–557. doi:10.1016/j.rser.2017.05.090.
[143] Erdiwansyah, Mahidin, R. Mamat, M.S.M. Sani, F. Khoerunnisa, A. Kadarohman, Target and demand for renewable energy across 10 ASEAN countries by 2040, Electr. J. 32 (2019) 106670. doi:10.1016/J.TEJ.2019.106670.
[144] G.A. Lenferna, Can we equitably manage the end of the fossil fuel era?, Energy Res. Soc. Sci. 35 (2018) 217–223. doi:10.1016/j.erss.2017.11.007.
[145] B. Rennkamp, S. Haunss, K. Wongsa, A. Ortega, E. Casamadrid, Competing coalitions: The politics of renewable energy and fossil fuels in Mexico, South Africa and Thailand, Energy Res. Soc. Sci. 34 (2017) 214–223. doi:10.1016/j.erss.2017.07.012.
[146] M.S. Huda, S.H. Ali, Energy diplomacy in South Asia: Beyond the security paradigm in accessing the TAPI pipeline project, Energy Res. Soc. Sci. 34 (2017) 202–213. doi:10.1016/j.erss.2017.07.013.
[147] D.A. Senshaw, J.W. Kim, Meeting conditional targets in nationally determined contributions of developing countries: Renewable energy targets and required investment of GGGI member and partner countries, Energy Policy. 116 (2018) 433–443. doi:10.1016/j.enpol.2018.02.017.
[148] P. Boontome, A. Therdyothin, J. Chontanawat, Investigating the causal relationship between non-renewable and renewable energy consumption, CO2 emissions and economic growth in Thailand, Energy Procedia. 138 (2017) 925–930. doi:10.1016/j.egypro.2017.10.141.
[149] K. Ito, CO2 emissions, renewable and non-renewable energy consumption, and economic growth: Evidence from panel data for developing countries, Int. Econ. 151 (2017) 1–6. doi:10.1016/j.inteco.2017.02.001.
[150] M.J. Bambawale, A.L. D’Agostino, B.K. Sovacool, Realizing rural electrification in Southeast Asia: Lessons from Laos, Energy Sustain. Dev. 15 (2011) 41–48. doi:10.1016/j.esd.2010.11.001.
[151] T.S. Aung, Evaluation of the environmental impact assessment system and implementation in Myanmar: Its significance in oil and gas industry, Environ. Impact Assess. Rev. 66 (2017) 24–32. doi:10.1016/j.eiar.2017.05.005.
[152] G. Cornish, V. Vivoda, Myanmar’s extractive industries: An institutional and regulatory assessment, Extr. Ind. Soc. 3 (2016) 1075–1083. doi:10.1016/j.exis.2016.08.002.
[153] K. Vu, K. Hartley, Promoting smart cities in developing countries: Policy insights from Vietnam, Telecomm. Policy. (2017) 1–15. doi:10.1016/j.telpol.2017.10.005.
[154] S. Matsumoto, Y. Omata, Consumer valuations of energy efficiency investments: The case of Vietnam’s Air Conditioner market, J. Clean. Prod. 142 (2017) 4001–4010. doi:10.1016/j.jclepro.2016.10.055.
[155] V. Nguyen-Tien, R.J.R. Elliott, E.A. Strobl, Hydropower generation, flood control and dam cascades: A national assessment for Vietnam, J. Hydrol. 560 (2018) 109–126. doi:10.1016/j.jhydrol.2018.02.063.
[156] N.A. Pambudi, Geothermal power generation in Indonesia, a country within the ring of fire: Current status, future development and policy, Renew. Sustain. Energy Rev. 81 (2018) 2893–2901. doi:10.1016/j.rser.2017.06.096.
[157] S.P. Brahim, Renewable energy and energy security in the Philippines, Energy Procedia. 52 (2014) 480–486. doi:10.1016/j.egypro.2014.07.101.
[158] A. Chanthawong, S. Dhakal, Liquid biofuels development in southeast asian countries: an analysis of market, policies and challenges, Waste and Biomass Valorization. 7 (2016) 157–173.
[159] S. Kimura, H. Phoumin, Energy Outlook and Energy Saving Potential in East Asia 2019, (2019).
[160] A.K. Shukla, K. Sudhakar, P. Baredar, R. Mamat, BIPV in Southeast Asian countries – opportunities and challenges, Renew. Energy Focus. 21 (2017) 25–32. doi:10.1016/j.ref.2017.07.001.
[161] CNN, The Renewable Energy Regulation is Judged Not to Support Small Entrepreneurs, (2019).