International Journal of Scientific & Technology Research

Home About Us Scope Editorial Board Contact Us

IJSTR >> Volume 9 - Issue 10, October 2020 Edition

International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616

The Analysis Techniques Of Amino Acid And Protein In Food And Agricultural Products

[Full Text]



Edy Subroto, Elazmanawati Lembong, Fitry Filianty, Rossi Indiarto, Gisella Primalia, Miswa Salza Kirana Zaenal Putri, Hanna Christy Theodora, Salsabila Junar



Protein, amino acid, analysis technique, food, agricultural product



The protein content in food and agricultural products affects the physicochemical and nutritional properties of these products. This review aims to discuss the analysis techniques of protein and amino acid in food and agricultural products. The qualitative analysis can be conducted using the Hopkins-Cole, Xanthoproteic, Millon, Nitroprusside, and Sakaguchi test. In contrast, the quantitative analysis of proteins can use the Kjehldahl, Biuret, Lowry, UV Spectrophotometry, and Turbidimetry. It also discussed the immunohistochemical techniques to identify cellular or tissue constituents (antigens) by staining techniques, while Formol titration measures the hydrolysis of proteins and N-amino quickly. The amino acids can be analyzed by microbiological methods, colorimetric, high-performance liquid chromatography (HPLC), and gravimetric techniques. These methods/techniques can be chosen according to the type of sample and the purpose of the analysis so that the results can be obtained accurately.



[1] A. L. Jonsson, M. A. J. Roberts, J. L. Kiappes, and K. A. Scott, “Essential chemistry for biochemists,” Essays Biochem., vol. 61, no. 4, pp. 401–427, 2017.
[2] R. L. Bertholf, “Proteins and Albumin,” Lab. Med., vol. 45, no. 1, pp. e25–e41, 2014.
[3] M. Lonnie et al., “Protein for Life : Review of Optimal Protein Intake , Sustainable Dietary Sources and the Effect on Appetite in Ageing Adults,” Nutrients, vol. 10, no. 3, pp. 1–18, 2018.
[4] A. E. Ghaly and K. N. Macdonald, “Drying of Poultry Manure for Use as Animal Feed,” Am. J. Agric. Biol. Sci., vol. 7, no. 3, pp. 239–254, 2012.
[5] A. Nahhar and K. Kok Siong, “Study on natural rubber absorption of selected actinides,” IOP Conf. Ser. Mater. Sci. Eng., vol. 555, no. 1, 2019.
[6] R. R. Wolfe, “Branched-chain amino acids and muscle protein synthesis in humans: Myth or reality?,” J. Int. Soc. Sports Nutr., vol. 14, no. 1, pp. 1–7, 2017.
[7] L. Ningbo and H. Hua, “An Artificial Neural Network Classifier for the Prediction of Protein Structural Classes,” Int. J. Curr. Eng. Technol., vol. 7, no. 3, pp. 946–952, 2017.
[8] M. Fioramonte, A. Mara, S. Mciiwain, W. S. Noble, K. G. Franchini, and F. C. Gozzo, “Analysis of secondary structure in proteins by chemical cross-linking coupled to MS,” Proteomics, vol. 12, no. 17, pp. 2746–2752, 2012.
[9] Y. Maphosa and V. A. Jideani, “The Role of Legumes in Human Nutrition,” in Functional Food - Improve Health through Adequate Food, M. C. Hueda, Ed. IntechOpen, 2017.
[10] S. H. M. Gorissen et al., “Protein content and amino acid composition of commercially available plant-based protein isolates,” Amino Acids, vol. 50, no. 12, pp. 1685–1695, 2018.
[11] B. Rezaharsamto and E. Subroto, “A Review On Bioactive Peptides Derived From Various Sources Of Meat And Meat By-Products,” Int. J. Sci. Technol. Res., vol. 8, no. 12, pp. 3151–3156, 2019.
[12] E. Subroto and M. A. H. Qonit, “Modification of soy protein for the production of bioactive peptides and their utilization,” Int. J. Sci. Technol. Res., vol. 9, no. 2, pp. 3121–3127, 2020.
[13] S. Kamineni, M. Manepally, and E. P. Kamineni, “Musculoskeletal Protein Analysis Techniques - A Review,” J. Rheumatol. Arthritic Dis., no. October, pp. 1–9, 2016.
[14] S. T. W. Ata, R. Yulianty, F. J. Sami, and N. Ramli, “Isolasi Kolagen Dari Kulit Dan Tulang Ikan Cakalang (Katsuwonus pelamis),” J. Pharm. Med. Sci., vol. 1, no. 1, pp. 27–30, 2016.
[15] M. I. Elzagheid, “Color Presenting Products of Amino Acids Reactions- Qualitative Tests,” Mod. Chem., vol. 6, no. 4, pp. 56–60, 2018.
[16] N. M. Saptarini, D. Rahayu, and S. A. F. Kusuma, “Protease Activity and Characterization of Bromelain Extract of Pineapple (Ananas comusus (L.) Merr) Crown from Subang, Indonesia,” Rasayan J. Chem., vol. 12, no. 4, pp. 2074–2081, 2019.
[17] S. K. Maurya, A. Asthana, S. P. Maurya, P. Maurya, and A. Maurya, “Qualitative Analysis of Protein: Egg Albumin and Milk,” Indian J. Drugs, vol. 7, no. 1, pp. 30–33, 2019.
[18] S. Dharma, U. Wulandari, M. Aria, and D. Dillasamola, “The influences of fibroblast growth factor (FGF) and protein about to histopathology of rats pancreatic β cell,” Res. J. Pharm. Biol. Chem. Sci., vol. 7, no. 5, pp. 481–487, 2016.
[19] S. Patton and D. V. Josephson, “Observations on the Application of the Nitroprusside Test to Heated Milk,” J. Dairy Sci., vol. 32, no. 5, pp. 398–405, 1949.
[20] Y. Nakagawa and F. L. Coe, “A Modified Cyanide-Nitroprusside Method for Quantifying Urinary Cystine Concentration That Corrects for Creatinine Interference,” Clin. Chim. Acta, vol. 289, no. 1–2, pp. 57–68, 1999.
[21] Y. Gu et al., “mTORC2 Regulates Amino Acid Metabolism in Cancer by Phosphorylation of the Cystine-Glutamate Antiporter xCT,” Mol. Cell, vol. 67, no. 1, p. 128–138.e7, 2017.
[22] S. Ke and R. Haselkorn, “The Sakaguchi Reaction Product Quenches Phycobilisome Fluorescence, Allowing Determination of The Arginine Concentration in Cells of Anabaena Strain PCC 7120,” J. Bacteriol., vol. 195, no. 1, pp. 25–28, 2013.
[23] N. K. K. Hindi, A. H. Al-Charrakh, H. S. Naher, and A. S. Abbas, “Study of Chemical Analysis of Iraqi Propolis and Active Components of Propolis,” J. Sci., vol. 5, no. 11, pp. 1095–1103, 2015.
[24] G. Tomlinson and T. Viswanatha, “Determination of The Arginine Content of Proteins by The Sakaguchi Procedure,” Anal. Biochem., vol. 60, no. 1, pp. 15–24, 1974.
[25] H. Wang, N. Pampati, W. M. McCormick, and L. Bhattacharyya, “Protein Nitrogen Determination by Kjeldahl Digestion and Ion Chromatography,” J. Pharm. Sci., vol. 105, no. 6, pp. 1851–1857, 2016.
[26] G. Cruz, “Boric acid in Kjeldahl analysis,” J. Chem. Educ., vol. 90, no. 12, pp. 1645–1648, 2013.
[27] A. Jonas-Levi and J. J. I. Martinez, “The High Level of Protein Content Reported in Insects for Food and Feed is Overestimated,” J. Food Compos. Anal., vol. 62, pp. 184–188, 2017.
[28] B. Jiang, R. Tsao, Y. Li, and M. Miao, “Food Safety: Food Analysis Technologies/Techniques,” Encycl. Agric. Food Syst., pp. 273–288, Jan. 2014.
[29] H. K. Mæhre, L. Dalheim, G. K. Edvinsen, E. O. Elvevoll, and I. J. Jensen, “Protein Determination—Method Matters,” Foods, vol. 7, no. 1, pp. 1–11, 2018.
[30] P. Tantisaranon, W. Chayanunnukul, and A. Bodhikul, “Method Evaluation of In-house Biuret Reagent for Determination of Serum Protein by Beckman Synchron LX 20 Pro Automatic Analyzer,” J. Med. Technol. Assoc. Thail., vol. 41, no. 3, pp. 4693–4702, 2013.
[31] K. Zheng, L. Wu, Z. He, B. Yang, and Y. Yang, “Measurement of the total protein in serum by biuret method with uncertainty evaluation,” Measurement, vol. 112, pp. 16–21, 2017.
[32] F. Arfuso, C. Giannetto, M. Rizzo, E. Giudice, F. Fazio, and G. Piccione, “Comparison of Refractometric and Biuretic Methods for the Assay of Total Protein in Horse Serum and Plasma Under Various Storage Conditions,” J. Equine Vet. Sci., vol. 61, pp. 58–64, 2018.
[33] G. Janairo, M. L. Sy, L. Yap, and N. Llanos-lazaro, “Determination of the Sensitivity Range of Biuret Test for Undergraduate Biochemistry Experiments,” e -Journal Sci. Technol., no. December, pp. 77–83, 2014.
[34] V. Martina and K. Vojtech, “A Comparison Of Biuret, Lowry and Bradford Methods for Measuring The Egg’s Proteins,” MendelNet, pp. 394–398, 2015.
[35] B. Deepachandi et al., “Quantification of Soluble or Insoluble Fractions of Leishmania Parasite Proteins in Microvolume Applications : A Simplification to Standard Lowry Assay,” Int. J. Anal. Chem., vol. 2020, pp. 1–8, 2020.
[36] S. V Thakkar, K. M. Allegre, S. B. Joshi, D. B. Volkin, and C. R. Middaugh, “An Application of Ultraviolet Spectroscopy to Study Interactions in Proteins Solutions at High Concentrations,” J. Pharm. Sci., vol. 101, no. 9, pp. 3051–3061, 2012.
[37] I. Okoronkwo, Nnenna; Mba, Kalu; Nnorom, “Estimation of Protein Content and Amino Acid Compositions in Selected Plant Samples Using UV-Vis Spectrophotometeric Method,” Am. J. Food Sci. Heal., vol. 3, no. 3, pp. 41–46, 2017.
[38] A. B. T. Ghisaidoobe and S. J. Chung, “Intrinsic Tryptophan Fluorescence in the Detection and Analysis of Proteins : A Focus on Förster Resonance Energy Transfer Techniques,” Int. J. Mol. Sci., vol. 15, no. 12, pp. 22518–22538, 2014.
[39] V. D. Suryawanshi, L. S. Walekar, A. H. Gore, P. V. Anbhule, and G. B. Kolekar, “Spectroscopic analysis on the binding interaction of biologically active pyrimidine derivative with bovine serum albumin,” J. Pharm. Anal., vol. 6, no. 1, pp. 56–63, 2016.
[40] J. K. Adu, C. D. K. Amengor, E. Orman, N. M. Ibrahim, M. O. Ifunanya, and D. F. Arthur, “Development and Validation of UV-Visible Spectrophotometric Method for the Determination of 5-Hydroxymethyl Furfural Content in Canned Malt Drinks and Fruit Juices in Ghana,” J. Food Qual., vol. 2019, pp. 1–8, 2019.
[41] I. Weeks, L. J. Kricka, and D. Wild, Signal Generation and Detection Systems (Excluding Homogeneous Assays), Fourth Edi. Elsevier Ltd, 2013.
[42] Y. Suzuki, “Reaction principle of turbidity generation of serum albumin by aromatic organic acid salt,” Int. J. Anal. Bio-Science, vol. 1, no. 1, pp. 27–36, 2013.
[43] S. Boumaza et al., “Rapid evaluation of proteins by turbidimetry: Application to some agroalimentary effluents treated by electrocoagulation,” J. Chem. Pharm. Res., vol. 6, no. 12, pp. 80–89, 2014.
[44] T. Sanderson, W. Graeme, A. M. Cull, J. Marston, G. Zardin, and R. W. Horobin, Immunohistochemical and immunofluorescent techniques, Eighth Edi., vol. 5. Elsevier, 2018.
[45] H. A. Idikio, “Immunohistochemistry in diagnostic surgical pathology: Contributions of protein life-cycle, use of evidence-based methods and data normalization on interpretation of immunohistochemical stains,” Int. J. Clin. Exp. Pathol., vol. 3, no. 2, pp. 169–176, 2010.
[46] A. Wolfschoon, “‘ Formol titration for the determination of the protein content in raw and pasteurized milk ’ ( In Portuguese ).,” no. November, 2015.
[47] M. Gozalli, Nurhayati, and A. Nafi, “Characteristics of Import and Local (Anjasmoro and Baluran varieties) Soybean Flour by Blanching and Non-Blanching Treatment,” J. Agroteknologi, vol. 9, no. 2, pp. 191–200, 2015.
[48] X. Lou, L. Zhang, J. Qin, and Z. Li, “Colorimetric sensing of α-Amino acids and its application for the ‘label-free’ detection of protease,” Langmuir, vol. 26, no. 3, pp. 1566–1569, 2010.
[49] A. M. El-Brashy and S. M. Al-Ghannam, “Colorimetric determination of some amino acids containing a sulfur group,” Pharm. World Sci., vol. 17, no. 2, pp. 54–57, 1995.
[50] L. Chen, Q. Chen, Z. Zhang, and X. Wan, “A novel colorimetric determination of free amino acids content in tea infusions with 2,4-dinitrofluorobenzene,” J. Food Compos. Anal., vol. 22, no. 2, pp. 137–141, 2009.
[51] R. Malviya, V. Bansal, O. Pal, and P. Sharma, “High performance liquid chromatography: A short review,” J. Glob. Pharma Technol., vol. 2, no. 5, pp. 23–30, 2010.
[52] M. Zhao et al., “A High-Performance Liquid Chromatographic Method for Simultaneous Determination of 21 Free Amino Acids in Tea,” Food Anal. Methods, vol. 6, no. 1, pp. 69–75, 2013.
[53] V. Ravikrishnan, N. Prashantha, G. Sanjeev, and R. Madaiah, “Amino Acid, Fatty Acid and Mineral Profile Of Mushroom Lentinus Polychrous Lév. from Western Ghats, Southern India,” Int. J. Plant, Anim. Environ. Sci., vol. 5, no. 1, NaN-NaN-2015, pp. 278–281, 2015.
[54] S. M. Rutherfurd and G. S. Gilani, Amino acid analysis, no. SUPPL.58. Wiley Interscience, 2009.
[55] J. J. Chen, Y. C. Lee, T. J. Cheng, H. Y. Hsiao, and R. L. C. Chen, “Determination of glucosamine content in nutraceuticals by capillary electrophoresis using in-capillary OPA labeling techniques,” J. Food Drug Anal., vol. 14, no. 2, pp. 203–206, 2010.
[56] C. Cortés-Herrera, G. Artavia, A. Leiva, and F. Granados-Chinchilla, “Liquid chromatography analysis of common nutritional components, in feed and food,” Foods, vol. 8, no. 1, 2019.
[57] E. E. Snell, “The Microbiological Assay of Amino Acids,” Adv. Protein Chem., vol. 2, pp. 85–118, 1945.
[58] E. Subroto and F. Hayati, “Chemical and Biotechnological Methods for the Production of Xylitol : A Review,” Int. J. Emerg. Trends Eng. Res., vol. 8, no. 6, pp. 2508–2512, 2020.
[59] D. C. V. Arifin, D. I. Saragih, and S. J. Santosa, “Antibacterial Activity of Silver Nanoparticles Synthesized Using Tyrosine as Capping and Reducing Agent,” Int. J. Emerg. Trends Eng. Res., vol. 8, no. 6, pp. 2414–2421, 2020.
[60] J. A. Blackmore and T. E. Parry, “Microbiological assay of amino acids in serum: valine, leucine, and methionine.,” J. Clin. Pathol., vol. 25, no. 2, pp. 171–175, 1972.
[61] D. Harvey, “Chapter 8 Gravimetric Methods Chapter Overview,” Anal. Chem. 2.0, pp. 355–410, 2009.
[62] N. R. Arezki, A. C. Williams, A. J. A. Cobb, and M. B. Brown, “Design, synthesis and characterization of linear unnatural amino acids for skin moisturization,” Int. J. Cosmet. Sci., vol. 39, no. 1, pp. 72–82, 2017.
[63] F. O’Brien, “The Control of Humidity by Saturated Salt Solutions,” J. Sci. Instrum., vol. 25, p. 73, Dec. 2002.