International Journal of Scientific & Technology Research

Home About Us Scope Editorial Board Blog/Latest News Contact Us
10th percentile
Powered by  Scopus
Scopus coverage:
Nov 2018 to May 2020


IJSTR >> Volume 9 - Issue 9, September 2020 Edition

International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616


[Full Text]



Muhammad Hafidz Fazli Md Fauadi, Amir Abdullah Muhamad Damanhuri, Ruzy Haryati Hambali, Ahamad Zaki Mohamed Noor, Nurul Izah Anuar



Cyber Physical Systems, Data Analytics, E-Manufacturing, Industrial Revolution 4.0, Internet of Things, Manufacturing System, Smart Factory System.



Internet of Things (IoT) is fundamentally changing the ways factory and manufacturing processes are managed. Leading manufacturers have already developing the ability to interconnect objects such as machineries and materials in establishing smart factory system. Apart from the interconnection advantages, IoT enable them to capture significant market shares by increasing the manufacturing performance through big data analytics. Therefore, it is very important for enterprises to learn and adopt the technology as quick as possible to be competitive. This article reviews the fundamental and applications of IoT in manufacturing engineering field within this decade.



[1] Ahmed, E., Yaqoob, I., Hashem, I. A. T., Khan, I., Ahmed, A. I. A., Imran, M., & Vasilakos, A. V. (2017). The role of big data analytics in Internet of Things. Future Generation Computer Systems, 129(99), 247–259. https://doi.org/10.1016/j.comnet.2017.06.013
[2] Alexopoulos, K., Sipsas, K., Xanthakis, E., & Mourtzis, D. (2018). An industrial Internet of things based platform for context-aware information services in manufacturing. International Journal of Computer Integrated Manufacturing, 00(00), 1–13. https://doi.org/10.1080/0951192X.2018.1500716
[3] Arnold, C., & Voigt, K.-I. (2018). Determinants of Industrial Internet of Things Adoption in German Manufacturing Companies. International Journal of Innovation and Technology Management, 1950038. https://doi.org/10.1142/s021987701950038x
[4] AZM Noor, MHFM Fauadi, FA Jafar, MH Nordin, SH Yahaya, S Ramlan, MA Shri Abdul Aziz, “Fuzzy Analytic Hierarchy Process (FAHP) Integrations for Decision Making Purposes: A Review,” Journal of Advanced Manufacturing Technology (JAMT) vol. 11 no. 2, pp. 139-154, 2017.
[5] AZ Mohamed Noor, MHF Md Fauadi, FA Jafar, SF Zainudin, “Fusion of Fuzzy AHP in Selecting Material for Drinking Water Bottle based on Customer Needs,” ARPN Journal of Engineering and Applied Sciences, vol. 12 no. 4, pp. 4243-4249, 2017.
[6] Boyes, H., Hallaq, B., Cunningham, J., & Watson, T. (2018). The industrial internet of things (IIoT): An analysis framework. Computers in Industry, 101 (December 2017), 1–12. https://doi.org/10.1016/j.compind.2018.04.015
[7] Otles, S., & Sakalli, A., 2019. Industry 4.0: The Smart Factory of the Future in Beverage Industry. In Production and Management of Beverages (pp. 439–469). Elsevier Inc. https://doi.org/10.1016/b978-0-12-815260-7.00015-8
[8] Braganza D, Tulasi B., 2017. RFID Security Issues in IoT: A Comparative Study. Orient.J. Comp. Sci. and Technol;10(1). Available from: http://www.computerscijournal.org/?p=4859
[9] Hamzeh, R., Zhong, R., & Xu, X. W. (2018). A Survey Study on Industry 4.0 for New Zealand Manufacturing. Procedia Manufacturing, 26, 49–57. https://doi.org/10.1016/j.promfg.2018.07.007
[10] Schweichhart, K., 2016. Reference architectural model industrie 4.0 (rami 4.0). An Introduction. Available online: https://ec.europa.eu/futurium/en/system/files/ged/a2-schweichhart-reference_architectural_model_industrie_4.0_rami_4.0.pdf.
[11] VDI, VDE, ZVEI, 2015. Gma status report: Reference Architecture Model Industrie 4.0 (RAMI4.0). https://www.zvei.org/fileadmin/user_upload/Presse_und_Medien/Publikationen/2016/januar/GMA_Status_Report__Reference_Archtitecture_Model_Industrie_4.0__RAMI_4.0_/GMA-Status-Report-RAMI-40-July-2015.pdf, [Retrieved June 23, 2019]
[12] Ezell, S. (2018). Why Manufacturing Digitalization Matters and How Countries Are Supporting It. Information Technology & Innovation Foundation, (April), 1–66. Retrieved from http://www2.itif.org/2018-manufacturing-digitalization.pdf
[13] Xu, H., Yu, W., Griffith, D., & Golmie, N. (2018). A Survey on Industrial Internet of Things : A Cyber-Physical Systems Perspective. IEEE Access, PP(c), 1. https://doi.org/10.1109/ACCESS.2018.2884906
[14] Bloom, G., Alsulami, B., Nwafor, E., & Bertolotti, I. C. (2020). Design Patterns for the Industrial Internet of Things. 2018 14th IEEE International Workshop on Factory Communication Systems (WFCS), 1–10.
[15] Wang, J., Qiao, L., & Qie, Y. (2017). Process Planning Service Model Design for Cloud Manufacturing *, 1169–1173.
[16] Wang, X. V., Givehchi, M., & Wang, L. (2017). Manufacturing system on the cloud : a case study on cloud-based process planning. Procedia CIRP, 63, 39–45. https://doi.org/10.1016/j.procir.2017.03.103
[17] Caggiano, A. (2018). Cloud-based manufacturing process monitoring for smart diagnosis services. International Journal of Computer Integrated Manufacturing, 00(00), 1–12. https://doi.org/10.1080/0951192X.2018.1425552
[18] Stergiou, C., Psannis, K. E., Kim, B. G., & Gupta, B. (2018). Secure integration of IoT and Cloud Computing. Future Generation Computer Systems, 78, 964–975. https://doi.org/10.1016/j.future.2016.11.031
[19] M Fauadi, MHF Bin, T Murata, “Makespan minimization of machines and automated guided vehicles schedule using binary particle swarm optimization,” World Congress on Engineering 2012, July 4-6, 2012. London, UK. 2182, pp. 1897-1902, 2010.
[20] Madhawa, S., Balakrishnan, P., & Arumugam, U. (2018). Data driven intrusion detection system for software defined networking enabled industrial internet of things. Journal of Intelligent and Fuzzy Systems, 34(3), 1289–1300. https://doi.org/10.3233/JIFS-169425
[21] Ma, H., & Liu, W. (2018). A Progressive Search Paradigm for the Internet of Things. IEEE Multimedia, 25(1), 76–86. https://doi.org/10.1109/MMUL.2017.265091429
[22] Thramboulidis, K., Vachtsevanou, D. C., & Solanos, A. (n.d.). Cyber-Physical Microservices. Uribe, F. (2018). The Classification of Internet of Things ( IoT ) Devices Based on Their Impact on The classification of Internet of Things ( IoT ) devices Based on their impact on Living Things, (June 2017). https://doi.org/10.2139/ssrn.3350094
[23] Cheng, J., Chen, W., Tao, F., & Lin, C. L. (2018). Industrial IoT in 5G environment towards smart manufacturing. Journal of Industrial Information Integration, 10(January), 10–19. https://doi.org/10.1016/j.jii.2018.04.001
[24] Hafidz Fazli Fauadi, Muhd Syafik Jumali (2008). Modeling and simulation of programmable universal machine for assembly (PUMA) industrial robot for automotive-related assembly process. 2008 IEEE International Symposium on Information Technology. Volume 3 Pages 1-5. https://doi.org/10.1109/ITSIM.2008.4632075
[25] Contreras-Masse, R., Ochoa-Zezzatti, A., García, V., Mejía, J., & Saul Gonzalez, S. (2019). Application of IoT with haptics interface in the smart manufacturing industry. International Journal of Combinatorial Optimization Problems & Informatics, 10(2), 57–70.
[26] Fauadi, M. H. F. M., Akmal, S., Ali, M. M., Anuar, N. I., Ramlan, S., Noor, A. Z. M., & Awang, N. (2018). Intelligent vision-based navigation system for mobile robot: A technological review. Periodicals of Engineering and Natural Sciences, 6(2), pp. 47-57.
[27] Yang, H., Kumara, S., Bukkapatnam, S. T. S., & Tsung, F. (2019). The internet of things for smart manufacturing: A review, IISE Transactions, vol. 51, no. 11, pp. 1190-1216. https://doi.org/10.1080/24725854.2018.1555383
[28] Shafiq, S. I., Szczerbicki, E., & Sanin, C. (2018). Manufacturing Data Analysis in Internet of Things/Internet of Data (IoT/IoD) Scenario. Cybernetics and Systems, 49(5–6), 280–295. https://doi.org/10.1080/01969722.2017.1418265
[29] Meng, Y., Yang, Y., Chung, H., Lee, P.H. and Shao, C., 2018. Enhancing sustainability and energy efficiency in smart factories: a review. Sustainability, 10(12), p.4779.
[30] Mehdiyev, N., Lahann, J., Emrich, A., Enke, D., Fettke, P. and Loos, P., 2017. Time series classification using deep learning for process planning: a case from the process industry. Procedia Computer Science, 114, pp.242-249.
[31] Song, Z., Sun, Y., Wan, J., Huang, L., Xu, Y., & Hsu, C. H. (2019). Exploring robustness management of social internet of things for customization manufacturing. Future Generation Computer Systems, 92, 846–856. https://doi.org/10.1016/j.future.2017.10.030
[32] Zhou, C., Damiano, N., Whisner, B., & Reyes, M. (2017). Industrial Internet of Thing:(IIoT) applications in underground coal mines. Min Eng, 40(4), 1291–1296. https://doi.org/10.19150/me.7919
[33] Ezell, S.J., Atkinson, R.D., Kim, I. and Cho, J., 2018. Manufacturing Digitalization: Extent of Adoption and Recommendations for Increasing Penetration in Korea and the US. Available at SSRN 3264125.