Effect Of Temperature On Hardness And Elastic Modulus In Tungsten-Rhenium Alloy: Study By Dynamics Molecular
[Full Text]
AUTHOR(S)
Toufik Karafi, Abdellah Tahiri, Mohamed Idiri, Brahim Boubeker
KEYWORDS
Tungsten-Rhenium alloy, nanoindentation, molecular dynamics simulations, mechanical property, temperature, defect mechanisms, hardness, elastic modulus.
ABSTRACT
In this work we performed a series of nanoindentations test on tungsten-rhenium (W-Re) alloys, using Molecular Dynamics simulations and Embedded Atom Method potential. We studied in first the temperature effect from 300K to 2000K on hardness and elastic modulus, we were interested later to defect mechanisms in (W-Re) alloys with a penetration rate of 3Å/ps and the Re concentration is also kept fixed as 5%Re.We found a decreased in reduced elastic modulus Er and the hardness H with the increase in temperature. The found results are in good agreement with the literature.
REFERENCES
[1] A.C. Fischer-Cripps, Nanoindentation, Mechanical Engineering Series, 2nd edition, Springer, New York, 2004.
[2] R. Armstrong, W. Elban, S. Walley, Int. J. Mod.Phys. B 27 (08) (2013).
[3] E. Weppelmann, M. Wittling, M.V. Swain, D. Munz, Indentation cracking of brittle thin films on brittle substrates, in: R.C. Bradt, D.P.H. Hasselman, D. Munz, M. Sakai, V.Y. Shevchenko (Eds.), Fracture Mechanics of Ceramics, Springer, Boston, MA, USA, 1996, pp. 475–486.
[4] A.A. Volinsky, J.B. Vella, W.W. Gerberich, Thin Solid Films 429 (1–2) (2003) 201–210.
[5] B. Yang, L. Riester, T. Nieh, Scr. Mater. 54 (7) (2006) 1277–1280.
[6] P.M. Sargent, M.F. Ashby, Mater. Sci. Technol. 8 (7) (1992) 594–601.
[7] A. Bendavid, P. Martin, H. Takikawa, Thin Solid Films 360 (1–2) (2000) 241–249.
[8] W.C. Oliver, G.M. Pharr, J. Mater. Res. 7 (06) (1992) 1564–1583.
[9] Tian, B., Yu, Q., Zhang, Z., Du, Z., Ren, W., Shi, P., & Jiang, Z. (2018).Effect of magnetron sputtering parameters on adhesion properties of tungsten-rhenium thin film thermocouples. Ceramics International. doi:10.1016/j.ceramint.2018.08.334.
[10] Tian, B., Zhang, Z., Shi, P., Zheng, C., Yu, Q., Jing, W., & Jiang, Z. (2017). Tungsten-rhenium thin film thermocouples for SiC-based ceramic matrix composites.Review of Scientific Instruments, 88(1), 015007. doi:10.1063/1.4973967
[11] T. Palacios, J. Reiser, J. Hoffmann, M. Rieth, A. Hoffmann, J. Pastor, Microstructural and mechanical characterization of an nealed tungsten (W)and potassium-doped tungsten foils, Int. J. Refract. Met. H. 48 (2015) 145–149.
[12] J. Kappacher, A. Leitner, D. Kiener, et al. / Materials and Design 189 (2020) 108499,Thermally activated deformation mechanisms and solid solution softening in W-Re alloys investigated via high temperature nanoindentation.
[13] AbdellahTahiri, Mohamed Idiri, BrahimBoubeker (2020), Mechanicals Behaviors of Tungsten-Rhenium Alloy Single Crystals from 77K to 300K - Atomic Simulation Study. International Journal of Engineering Research in Africa, 177-181
[14] Chen-hao QIAN, et al/Trans, Microstructure and hardness of W−25Re alloy processed by high-pressure torsion, Nonferrous Met. Soc. China 27(2017) 2622−2629.
[15] H.A. Wu, X.X. Wang, X.G. Ni, Acta. Meta.Sin. 38 (2002) 1219–1222.
[16] Gupta, Tibra Das, et al. “Temperature and Strain Rate Dependent Mechanical Properties of a Square Nickel Plate with Different Shaped Central Cracks: A Molecular Dynamics Study.” Journal of Nano Research, vol. 55, Trans Tech Publications, Ltd., Nov. 2018, pp. 32–41. Crossref, doi:10.4028/www.scientific.net/jnanor.55.32.
[17] Zhang, Yan, et al. “Study of Processability of Cu/Ni Bilayers Using Molecular Dynamics Simulations.” Journal of Nano Research, vol. 52, Trans Tech Publications, Ltd., May 2018, pp. 43–53. Crossref, doi:10.4028/www.scientific.net/jnanor.52.43.
[18] G. Bonny, A. Bakaev,.D.Terentyev, and Yu. A. Mastrikov, Interatomic potential to study plastic deformation in tungsten-rhenium alloys, J. Appl. Phys. 121, 165107 (2017).
[19] F. F. Abraham, R. Walkup, H. Gao, M. Duchaineau, T. D. D. L. Rubia, and M. Seager,―Simulating materials failure by using up to one billion atoms and the world’s fastestcomputer: Work-hardening,‖ Proc. Natl. Acad. Sci., vol. 99, no. 9, pp. 5783–5787, Apr.2002.
[20] Finnis M. Interatomic Forces in Condensed Matter. Oxford University Press 2003;129-186
[21] S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1995) 1–19. doi:10.1006/jcph.1995.1039.
[22] G. Bonny, A. Bakaev,.D.Terentyev, and Yu. A. Mastrikov, Interatomic potential to study
plastic deformation in tungsten-rhenium alloys, J. Appl. Phys. 121, 165107 (2017).
[23] A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO--the Open Visualization Tool, Model. Simul.Mater.Sci.Eng. 18 (2009) 15012.
[24] C.L. Kelchner, S.J. Plimpton, J.C. Hamilton, Dislocation nucleation and defect structure during surface indentation, Phys. Rev. B. 58 (1998) 11085.
[25] J.D. Honeycutt, H.C. Andersen, Molecular dynamics study of melting and freezing of small Lennard-Jones clusters, J. Phys. Chem. 91 (1987) 4950–4963.
[26] A. Stukowski, K. Albe, Extracting dislocations and non-dislocation crystal defects from atomistic simulation data, Model. Simul.Mater.Sci. Eng. 18 (2010) 85001.
[27]Lebedev, A.B.; Burenkov, Y.A.; Romanov, A.E.; Kopylov, V.I.; Filonenko, V.P.; Gryaznov, V.G. Softening of the elastic modulus in submicrocrystalline copper. Mater.Sci. Eng. A 1995, 203, 165–170.
[28] J. Li, Q.H. Fang, Y.W. Liu, L.C. Zhang, A molecular dynamics investigation into the mechanisms of subsurface damage and material removal of monocrystalline copper subjected to nanoscale high speed grinding, Appl. Surf. Sci. 303 (2014) 331–343.
[29]T.M. Pollock and R.D. Field, Dislocations and High-Temperature Plastic Deformation of Superalloy Single Crystals, Dislocations in SolidsVolume 11, 2002, Pages 547-618.
|