IJSTR

International Journal of Scientific & Technology Research

Home About Us Scope Editorial Board Blog/Latest News Contact Us
0.2
2019CiteScore
 
10th percentile
Powered by  Scopus
Scopus coverage:
Nov 2018 to May 2020

CALL FOR PAPERS
AUTHORS
DOWNLOADS
CONTACT

IJSTR >> Volume 9 - Issue 9, September 2020 Edition



International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616



Effect Of Nano Al2O3 Addition On The Mechanical Properties Of GFRP Reinforced By Mwcnts

[Full Text]

 

AUTHOR(S)

Yaser A., Mohamed N. Elsheikh, Naguib G. Yakoub

 

KEYWORDS

Al2O3, MWCNTs, nanoparticles, E-glass fiber, Mechanical properties, vinyl ester, polymer nanocomposites.

 

ABSTRACT

In the scientific literature, nanocomposite materials are widely studied because they introduce considerable improvements in the properties even at a low nanoparticular content. In the present paper mechanical properties of Al2O3/ GFRP reinforced by MWCNTs were studied. The Al2O3 nanoparticles are mixed with vinyl ester resin using ultrasonic bath sonicator in different weight fractions of 0, 1 and 2% with a constant weight fraction 0.5% of MWCNTs in all composites. E-Glass fiber (chopped strand mat) is used as fiber reinforcement. The effect of Al2O3 nanoparticles addition on the mechanical properties such as hardness, flexural and tensile strength were investigated. It was founded that addition of Al2O3 to (GFRP/0.5 wt% of MWCNTs) improves the mechanical properties of composites.

 

REFERENCES

[1] Mohan N., Ramachandra A. and Kulkarni S., Influence of process parameters on cutting force and torque during drilling of glass–fiber polyester reinforced composites. Compos Struct 2005; 71:407–13.
[2] Palanikumar K., Modeling and analysis of delamination factor and surface roughness in drilling GFRP composites.Mater Manuf Process 2010;25:1059–67.
[3] Xiao .H and Yiu W., Micromechanics of rubber–toughened polymers, J. Mater. Sci., 1998 ,33:3529–3539.
[4] Jun M., Mao S.,Xu S., Shao R. and Ian L., Study of epoxy toughened by in situ formed rubber nanoparticles, J. Appl. Polym.Sci., (2008),110:304-312
[5] Quyen H., Hsu C., Jia B., Izzuddin Z., Lee L. and Jun M., Structure–property relations of 55 nm particle-toughened epoxy, October 2010, 51:4867-4879.
[6] YEE A and Person R., Toughening mechanisms in elastomer-modified epoxies, J Mater Sci, 1986,21:2462–2474.
[7] Day R., Lovell P. and Wazzan A., Toughened carbon/epoxy composites made by using core/shell particles. Composites Science and Technology, 2001,61:41-56.
[8] Jianfeng W., Xiaohong Z., Lei J.and Jinliang Q., dvances in Toughened Polymer Materials by Structured Rubber Particles, Progress in Polymer Science,2019,98:101-160.
[9] Fujiwara, S., “Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites”, Sakamoto Japanese Patent Application, September 29, 1976,51:109-998.
[10] Usuki, A., Kojima, Y., Kawasumi, M., Okada, A., Kurauchi, T. and Kamigaito, O., Polímeros - Formation and properties of nylon 6 nanocomposites, Mater Res.J.,1998, 8:1179-1184.
[11] Okada, O., Kawasumi, M., Usuki, A., Kojima, Y., and Kamigaito, O., “Thermal degradation of polyamide 6 in polyamide 6/clay nanocomposites”, Mater Res Soc Symp Proc,1990,171(10):45-50.
[12] Lee, S.Y., Shim E.S., Kang, H.S., Pang, S.S., and Kang, J.S., “Fabrication of ZnO thin film diode using laser annealing”, Thin Solid Films,2005, 437(1):31-34.
[13] Könenkamp, R., Word, R.C. and Schlegel, C., “Vertical nanowire light emitting diode”, Appl Phys Lett,2004, 85(24):6004- 6006.
[14] Godara A., Mezzo L., Luizi F., Warrier A., Lomov S., van Vuure A., Gorbatikh L., Moldenaers P. and Verpoest I. , Influence of carbon nanotube reinforcement on the processing and the mechanical behaviour of carbon fiber/epoxy composites, Carbon, October 2009, 47:2914-2923.
[15] Niels D.G., Larissa G., Ajay G., Luca M., Stepan V. and Lomov I.V., The effect of carbon nanotubes on the damage development in carbon fiber/epoxy composites, Carbon,2011,49:4650-4664.
[16] Peerapan D.,Raymond A. and Pearson, Effect of silica nanoparticle size on toughening mechanisms of filled epoxy, Polymer,2012,53:1890-1905.
[17] Min L., Gu Y., Liu Y.N., Yanan L., Yanxia L.,Zuoguang Z., Interfacial improvement of carbon fiber/epoxy composites using a simple process for depositing commercially functionalized carbon nanotubes on the fibers, Carbon,2013,52:109-121.
[18] Hong-Yuan L., Gongtao W. and Yiu-Wing M., Cyclic fatigue crack propagation of nanoparticle modified epoxy, Composites Science and Technology,2012,72:1530-1538.
[19] Mohammad M., and Karen I., Polymer Nanocomposites Containing Carbon Nanotubes, Macromolecules 2006, 39:5194–5205.
[20] Thakre P.R., Lagoudas D.C., Riddick J.C., Gates T.S., Frankland S.J.V., Ratcliffe J.G., Zhu J., and Barrera E.V., Investigation of the effect of single wallcarbon nanotubes on interlaminarfracture toughness of woven carbonfiber–epoxy composites, J. Compos. Mater.,2011, 45, 1091-1107.
[21] Kanagaraj S.,Mechanical properties of high density polyethylene/carbon nanotube composites. Compos Sci Technol 2007; 67:3071-3077.
[22] Allaoui A. Bai S., Cheng H. M., Bai J. B., Mechanical and electrical properties of a MWNT/epoxy composite, Composites Science and Technology,2002,62:1993-1998.
[23] T. Liu, I. Phang, L. Shen, S. Chow, W. Zhang, Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6 composites, Macromolecules,2014, 37:7214-7222.
[24] Yang J. Morphology thermal stability and dynamic mechanical properties of tactic polypropylene/carbon nano tube composites. J App Polym Sci 2005; 98:1087-1091.
[25] Dae-Soon L., Jeong-wook A., Hwack J., Effect of carbon nanotube addition on the tri biological behaviour of carbon/ carbon composites., Wear 2002; 252:512-517.
[26] Schadler LS, Giannaris SC, Ajayan PM., Load transfer in carbon nanotube epoxy composites. Appl Phys Lett 1998;73(26):3842–3844.
[27] Gojny F., Wichmann M., Fiedler B. and Schulte K., Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites – a comparative study. Compos SciTechnol 2005; 65:2300–2313.
[28] Shekar K., Prasad B. and Prasad N., Effect of amino multiwalled carbon nanotubes reinforcement on the flexural properties of neat epoxy. Appl Mech Mater 2014; 592:912–916.
[29] Breton Y., Esarmot G., Salvetat J P, et al., Mechanical properties of multiwall carbon nanotubes/epoxy composites: influence of network morphology. Carbon 2004; 42(5-6): 1027-1030.