IJSTR

International Journal of Scientific & Technology Research

Home About Us Scope Editorial Board Blog/Latest News Contact Us
0.2
2019CiteScore
 
10th percentile
Powered by  Scopus
Scopus coverage:
Nov 2018 to May 2020

CALL FOR PAPERS
AUTHORS
DOWNLOADS
CONTACT

IJSTR >> Volume 5 - Issue 7, July 2016 Edition



International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616



Effect Of Silica-Fume Microparticles On Rigid Polyurethane Foam Properties

[Full Text]

 

AUTHOR(S)

Ismail Ibrahim Marhoon

 

KEYWORDS

Rigid polyurethane foam, Silica fume microparticles, Physical properties, Mechanical properties, Water absorption, Density, Foam composite

 

ABSTRACT

This study investigated the effect of silica fume microparticles on the properties of polyurethane foam. Results show that the introduction of silica fume microparticles in the foam- composition does not deteriorate the compression strength of the foam. Furthermore, the addition reduces the temperature that developed in the foaming process, slightly increases the density of the material, and reduces water absorption.

 

REFERENCES

[1]. Caterina Lorusso, Viviana Vergaro, Annagrazia Monteduro, Antonio Saracino, Giuseppe Ciccarella, Paolo Maria Congedo and Barbara Federica Scremin. Characterization of Polyurethane Foam Added with Synthesized Acetic and Oleic-modified TiO2 Nanocrystals. Nanomater Nanotechnol, 2015, 5:26.

[2]. de Mello, Darlan, Sérgio H. Pezzin, and Sandro C. Amico. "The effect of post-consumer PET particles on the performance of flexible polyurethane foams." Polymer Testing 28, No. 7 (2009): 702-708.

[3]. F. Saint-Michel, L. Chazeau, J.Y. Cavaille´ , Mechanical properties of high density polyurethane foams: II effect of the filler size, Compos. Sci. Technol. 66 (15) (2006) 2709.

[4]. B. Czupryrnski, J. Liszkowska, J. Paciorek-Sadowska, Modification of rigid polyurethane-polyisocyanurate foam with selected powder fillers, Polimery-W 53 (2) (2008) 133.

[5]. Mukherji, S. Mishra, Effect of sizes of nano Ca3(PO4)2 on mechanical and thermal properties of polyurethane foam composites, Polym. Plast. Technol. 46 (2007) 675.

[6]. M. Thirumal, D. Khastgir, N.K. Singha, B.S. Manjunath, Y.P. Naik, Mechanical, morphological and thermal properties of rigid polyurethane foam: effect of the fillers, Cell Polym. 26 (2007) 245.

[7]. S. Mishra, A. Mukherji, Effect of interaction of commercial and nano size CaSO4 filler on mechanical and thermal properties of polyurethane foam, J. Sci. Ind. Res. 65 (2006) 582.

[8]. M.M.A. Nikje, A.B. Garmarudi, M. Haghshenas, Effect of talc filler on physical properties of polyurethane rigid foams, Polym. Plast. Technol. 45 (2006) 1213.

[9]. R. Verdejo, G. Jell, L. Safinia, A. Bismarck, M.M. Stevens, M.S.P. Shaffer, Reactive polyurethane carbon nanotube foams and their interactions with osteoblasts, J. Biomed. Mater. Res. A 88A (1) (2009) 65.

[10]. Marhoon, Ismail I., Rasheed, Aseel K., Mechanical and Physical Properties of Glass Wool-Rigid Polyurethane Foam Composites, Al-Nahrain University College of Engineering Journal (NUCEJ) Vol.18 No.1, pp.41 – 49, 2015

[11]. M. Modesti, A. Lorenzetti, S. Besco, Influence of nano fillers on thermal insulating properties of polyurethane nanocomposites foams, Polym. Eng. Sci. 47 (9) (2007) 1351.

[12]. Yakushin, V., L. Bel’kova, and I. Sevastyanova. "Properties of rigid polyurethane foams filled with glass microspheres." Mechanics of Composite Materials 48, no. 5 (2012): 579-586.

[13]. V. Masik, N. V. Sirotinkin, S. V. Yatsenko, and S. V. Vakulenko, “Effect of glass microspheres on the properties of rigid polyurethane foams,” Plast. Massy, No. 1, 41-46 (2002).

[14]. International Standard ISO 845:2006, “Cellular plastics and rubbers - Determination of apparent density”, Third edition.

[15]. ASTM Designation: D1621, Standard Test Method for Compressive Properties Of Rigid Cellular Plastics, Annual Book of ASTM Standard, Volume 08.01 Plastics (I): D 256 - D 3159, 2005.

[16]. ASTM Designation: D 790 – 03, Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, Annual Book of ASTM Standard, Volume 08.01 Plastics (I): D 256 - D 3159, 2003.

[17]. ASTM Designation: D 4812–99, Standard Test Method for Unnotched Cantilever Beam Impact Resistance of Plastics, Annual Book of ASTM Standard, Volume 08.02, Plastics(II): D 3222 - D 5083, June 2005.

[18]. ASTM Designation: D 570 – 98, Standard Test Method for Water Absorption of Plastics, Annual Book of ASTM Standard, Volume 08.01 Plastics (I): D 256 - D 3159, January 2005.