On Super Edge Local Antimagic Total Labeling by Using an Edge Antimagic Vertex Labeling Technique
[Full Text]
AUTHOR(S)
Ika Hesti Agustin, Dafik, Marsidi, Ridho Alfarisi, E Y Kurniawati
KEYWORDS
antimagic total labeling, super edge local antimagic total labeling, chromatic number.
ABSTRACT
In this paper, we consider that all graphs are finite, simple and connected. Let G(V,E) be a graph of vertex set V and edge set E. By a edge local antimagic total labeling, we mean a bijection f:V(G)∪E(G)→{1,2,3,...,|V(G)|+|E(G)|} satisfying that for any two adjacent edges e_1 and e_2, w_t (e_1)≠w_t (e_2), where for e=uv∈G,w_t (e)=f(u)+f(v)+f(uv). Thus, any edge local antimagic total labeling induces a proper edge coloring of G if each edge e is assigned the color w_t (e). It is considered to be a super edge local antimagic total coloring, if the smallest labels appear in the vertices. The chromatic number of super edge local antimagic total, denoted by γ_leat (G), is the minimum number of colors taken over all colorings induced by super edge local antimagic total labelings of G. In this paper, we investigate the lower bound of super edge local antimagic total coloring of graphs and the existence the chromatic number of super edge local antimagic total labeling of ladder graph L_n, caterpillar graph C_(n,m), and graph coronations P_n⨀P_2 and C_n⨀P_2..
REFERENCES
[1] M. Bac ̌a, F.A. Muntaner-Batle, A. Semanic ̌ov'a-Fen ̌ovc ̌i ́kova ́, On super (a,2)-edge-antimagic total labeling of Disconnected Graphs, Ars Combin., 113 (2014), 129--137.
[2] M. Bac ̌a, Yuqing Lin, A. Semanic ̌ov'a-Fen ̌ovc ̌i ́kova ́, Note on super antimagicness of disconnected graphs, AKCE Int. J. of Graphs and Combin., 6 (1) (2009), 47--55.
[3] Gross J L, Yellen J and Zhang P 2014 Handbook of graph Theory Second Edition CRC Press Taylor and Francis Group
[4] Chartrand G and Lesniak L 2000 Graphs and digraphs 3rd ed (London: Chapman and Hall)
[5] Hartsfield N dan Ringel G 1994 Pearls in Graph Theory Academic Press. United Kingdom
[6] Arumugam S, Premalatha K, Baca M and Semanicova-Fenovcikova A 2017 Local Antimagic Vertex Coloring of a Graph, Graphs and Combinatorics 33 275-285
[7] Dafik, Miller, M., Ryan, J., and Baca, M. (2011). Super edge-antimagic total labelings of mK_(n,n). Ars Combinatoria, 101, 97-107.
[8] Dafik, M. Mirka, Joe Ryan, and Martin Baca. "Super edge-antimagicness for a class of disconnected graphs." (2006).
[9] Dafik, Slamin, Dushyant Tanna, Andrea Semanicova-Fenovcikova, and Martin Baca. (2017). Constructions of H-Antimagic Graphs Using Smaller Edge-Antimagic Graphs. Ars Combinatoria, 133, 233-245.
[10] Agustin, Ika Hesti, D. Dafik, and A. Y. Harsya. "On r-dynamic coloring of some graph operations." Indonesian Journal of Combinatorics 1.1 (2016): 22-30.
|