International Journal of Scientific & Technology Research

Home About Us Scope Editorial Board Blog/Latest News Contact Us
10th percentile
Powered by  Scopus
Scopus coverage:
Nov 2018 to May 2020


IJSTR >> Volume 5 - Issue 7, July 2016 Edition

International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616

Towards A Model Of Knowledge Extraction Of Text Mining For Palliative Care Patients In Panama.

[Full Text]



Denis Cedeno Moreno, Miguel Vargas-Lombardo



electronic health records, knowledge, ontology, palliative care, text mining



Solutions using information technology is an innovative way to manage the information hospice patients in hospitals in Panama. The application of techniques of text mining for the domain of medicine, especially information from electronic health records of patients in palliative care is one of the most recent and promising research areas for the analysis of textual data. Text mining is based on new knowledge extraction from unstructured natural language data. We may also create ontologies to describe the terminology and knowledge in a given domain. In an ontology, conceptualization of a domain that may be general or specific formalized. Knowledge can be used for decision making by health specialists or can help in research topics for improving the health system.



[1] S. M. Allameh and S. M. Zare, “Examining the impact of KM enablers on knowledge management processes,” Procedia Comput. Sci., vol. 3, pp. 1211–1223, 2011.

[2] M. Terzieva, “Project Knowledge Management: How Organizations Learn from Experience,” Procedia Technol., vol. 16, pp. 1086–1095, 2014.

[3] K. a. Dill, A. Lucas, J. Hockenmaier, L. Huang, D. Chiang, and A. K. Joshi, “Computational linguistics: A new tool for exploring biopolymer structures and statistical mechanics,” Polymer (Guildf)., vol. 48, no. 15, pp. 4289–4300, 2007.

[4] I. Peñalver-Martinez, F. Garcia-Sanchez, R. Valencia-Garcia, M. Á. Rodríguez-García, V. Moreno, A. Fraga, and J. L. Sánchez-Cervantes, “Feature-based opinion mining through ontologies,” Expert Syst. Appl., vol. 41, no. 13, pp. 5995–6008, 2014.

[5] N. Zhong, S. Member, Y. Li, and S. Wu, “Effective pattern discovery for text mining,” 2010.

[6] H. Hashimi, A. Hafez, and H. Mathkour, “Selection criteria for text mining approaches,” Comput. Human Behav., vol. 51, pp. 729–733, 2015.

[7] T. Suzuki, H. Yokoi, S. Fujita, and K. Takabayashi, “Automatic DPC code selection from electronic medical records: Text mining trial of discharge summary,” Methods Inf. Med., vol. 47, pp. 541–548, 2008.

[8] M. Krallinger, A. Morgan, L. Smith, F. Leitner, L. Tanabe, J. Wilbur, L. Hirschman, and A. Valencia, “Evaluation of text-mining systems for biology: overview of the Second BioCreative community challenge.,” Genome Biol., vol. 9 Suppl 2, no. Suppl 2, p. S1, 2008.

[9] M. Krallinger, A. Valencia, and L. Hirschman, “Linking genes to literature: text mining, information extraction, and retrieval applications for biology.,” Genome Biol., vol. 9 Suppl 2, no. Suppl 2, p. S8, 2008.

[10] Y. H. Tseng, C. J. Lin, and Y. I. Lin, “Text mining techniques for patent analysis,” Inf. Process. Manag., vol. 43, no. September, pp. 1216–1247, 2007.

[11] S. Ananiadou, D. B. Kell, and J. Tsujii, “Text mining and its potential applications in systems biology.,” Trends Biotechnol., vol. 24, no. 12, pp. 571–579, 2006.

[12] S. Ananiadou and J. McNaught, “Text Mining for Biology and Biomedicine,” Comput. Linguist., vol. 33, pp. 135–140, 2006.

[13] G. Akçapınar, “How automated feedback through text mining changes plagiaristic behavior in online assignments,” Comput. Educ., vol. 87, pp. 123–130, 2015.

[14] V. Gupta and G. S. Lehal, “A survey of text mining techniques and applications,” J. Emerg. Technol. Web Intell., vol. 1, no. 1, pp. 60–76, 2009.

[15] Q. Mei and C. Zhai, “Discovering evolutionary theme patterns from text: an exploration of temporal text mining,” Proc. Elev. ACM SIGKDD Int. Conf. Knowl. Discov. data Min., pp. 198–207, 2005.

[16] H.-C. Yang, C.-H. Lee, and H.-W. Hsiao, “Incorporating Self-Organizing Map with Text Mining Techniques for Text Hierarchy Generation,” Appl. Soft Comput., vol. 34, pp. 251–259, 2015.

[17] J. I. Guerrero, C. León, I. Monedero, F. Biscarri, and J. Biscarri, “Improving Knowledge-Based Systems with statistical techniques, text mining, and neural networks for non-technical loss detection,” Knowledge-Based Syst., vol. 71, pp. 376–388, 2014.
[18] R. J. Mooney and R. Bunescu, “Mining knowledge from text using information extraction,” ACM SIGKDD Explor. Newsl., vol. 7, no. 1, pp. 3–10, 2005.

[19] H. Mahgoub, H. Mahgoub, N. Ismail, N. Ismail, F. Torkey, and F. Torkey, “A Text Mining Technique Using Association Rules Extraction,” World Health, pp. 21–28, 2008.

[20] H. (National U. of S. Liu, H. (Osaka U. Motoda, R. Setiono, and Z. Zhao, “Feature Selection : An Ever Evolving Frontier in Data Mining,” J. Mach. Learn. Res. Work. Conf. Proc. 10 Fourth Work. Featur. Sel. Data Min., pp. 4–13, 2010.

[21] M. Reinberger and P. Spyns, “Unsupervised text mining for the learning of dogma-inspired ontologies,” Ontol. Learn. from Text Methods, Appl. Eval., no. September, pp. 29–43, 2005.

[22] M. Krallinger, R. a a Erhardt, and A. Valencia, “Text-mining approaches in molecular biology and biomedicine,” Drug Discov. Today, vol. 10, no. 6, pp. 439–445, 2005.

[23] T. Baldwin, P. Cook, B. Han, A. Harwood, S. Karunasekera, and M. Moshtaghi, A Support Platform for Event Detection using Social Intelligence. 2012.

[24] Y. Yang, L. Akers, T. Klose, and C. Barcelon Yang, “Text mining and visualization tools - Impressions of emerging capabilities,” World Pat. Inf., vol. 30, no. September 2015, pp. 280–293, 2008.

[25] A. Stavrianou, P. Andritsos, and N. Nicoloyannis, “Overview and semantic issues of text mining,” ACM SIGMOD Rec., vol. 36, no. 3, p. 23, 2007.

[26] D. J. Berndt, J. a. McCart, D. K. Finch, and S. L. Luther, “A Case Study of Data Quality in Text Mining Clinical Progress Notes,” ACM Trans. Manag. Inf. Syst., vol. 6, no. FEBRUARY, pp. 1–21, 2015.

[27] P. Lependu, S. V Iyer, C. Fairon, and N. H. Shah, “Annotation Analysis for Testing Drug Safety Signals using Unstructured Clinical Notes.,” J. Biomed. Semantics, vol. 3 Suppl 1, no. Suppl 1, p. S5, 2012.

[28] D. R. Murphy, A. Laxmisan, B. a Reis, E. J. Thomas, A. Esquivel, S. N. Forjuoh, R. Parikh, M. M. Khan, and H. Singh, “Electronic health record-based triggers to detect potential delays in cancer diagnosis.,” BMJ Qual. Saf., vol. 23, no. September 2015, pp. 8–16, 2014.

[29] S. L. West, W. Johnson, W. Visscher, M. Kluckman, Y. Qin, and A. Larsen, “The challenges of linking health insurer claims with electronic medical records.,” Health Informatics J., vol. 20, pp. 22–34, 2014.

[30] R. Cohen, M. Elhadad, and N. Elhadad, “Redundancy in electronic health record corpora: analysis, impact on text mining performance and mitigation strategies.,” BMC Bioinformatics, vol. 14, p. 10, 2013.

[31] S. Tanuja, D. Acharya, and K. R. Shailesh, “Comparison of different data mining techniques to predict hospital length of stay,” J. Pharm. Biomed. Sci., vol. 07, no. 07, 2011.

[32] T. S. Cole, J. Frankovich, S. Iyer, P. Lependu, A. Bauer-Mehren, and N. H. Shah, “Profiling risk factors for chronic uveitis in juvenile idiopathic arthritis: a new model for EHR-based research.,” Pediatr. Rheumatol. Online J., vol. 11, p. 45, 2013.

[33] N. Ramakrishnan, D. Hanauer, B. Keller, and B. Ramakrishnan, N., Hanauer, D., & Keller, “Mining electronic health records.,” Computer (Long. Beach. Calif)., vol. 43, no. October, pp. 77–81, 2010.

[34] P. Daumke, S. Schulz, M. L. Müller, W. Dzeyk, L. Prinzen, E. J. Pacheco, P. S. Cancian, P. Nohama, and K. Markó, “Subword-based semantic retrieval of clinical and bibliographic documents,” Methods Inf. Med., vol. 49, no. FEBRUARY, pp. 141–147, 2010.

[35] M. Kvist, M. Skeppstedt, S. Velupillai, and H. Dalianis, “Modeling human comprehension of Swedish medical records for intelligent access and summarization systems - Future vision , a physician ’ s perspective,” 9th Scand. Conf. Heal. Informatics, 2011.

[36] P. Coorevits, M. Sundgren, G. O. Klein, a. Bahr, B. Claerhout, C. Daniel, M. Dugas, D. Dupont, a. Schmidt, P. Singleton, G. De Moor, and D. Kalra, “Electronic health records: New opportunities for clinical research,” J. Intern. Med., vol. 274, no. September 2015, pp. 547–560, 2013.

[37] I. Fatima, M. Fahim, D. Guan, Y.-K. Lee, and S. Lee, “Socially interactive CDSS for u-life care,” Proc. 5th Int. Confernece ubiquitous Inf. Manag. Commun., no. September 2015, pp. 1–8, 2011.

[38] R. Harpaz, A. Callahan, S. Tamang, Y. Low, D. Odgers, S. Finlayson, K. Jung, P. LePendu, and N. H. Shah, “Text Mining for Adverse Drug Events: the Promise, Challenges, and State of the Art,” Drug Saf., no. September 2015, 2014.

[39] A Holzinger, R. Geierhofer, F. Mödritscher, and R. Tatzl, “Semantic Information in Medical Information Systems: Utilization of Text Mining Techniques to Analyze Medical Diagnoses,” J. Univers. Comput. Sci., vol. 14, no. 22, pp. 3781–3795, 2008.

[40] M. Andrade-Navarro and C. Perez-Iratxeta, “Text mining of biomedical literature: Doing well, but we could be doing better,” Methods, vol. 74, pp. 1–2, 2015.

[41] F. Rinaldi, K. Kaljurand, and R. Sætre, “Terminological resources for text mining over biomedical scientific literature,” Artif. Intell. Med., vol. 52, no. 2, pp. 107–114, 2011.

[42] R. a A. Seoud and M. S. Mabrouk, “TMT-HCC: A tool for text mining the biomedical literature for hepatocellular carcinoma (HCC) biomarkers identification,” Comput. Methods Programs Biomed., vol. 112, no. 3, pp. 640–648, 2013.

[43] I. Spasić, J. Livsey, J. a Keane, and G. Nenadić, “Text mining of cancer-related information: Review of current status and future directions.,” Int. J. Med. Inform., vol. 83, pp. 605–623, 2014.

[44] B. Xie, Q. Ding, H. Han, and D. Wu, “MiRCancer: A microRNA-cancer association database constructed by text mining on literature,” Bioinformatics, vol. 29, pp. 638–644, 2013.

[45] Y.-C. Fang, H.-C. Huang, and H.-F. Juan, “MeInfoText: associated gene methylation and cancer information from text mining.,” BMC Bioinformatics, vol. 9, p. 22, 2008.

[46] Who, “World Health Statistics 2009,” p. 149, 2009.

[47] F. Zhu, P. Patumcharoenpol, C. Zhang, Y. Yang, J. Chan, A. Meechai, W. Vongsangnak, and B. Shen, “Biomedical text mining and its applications in cancer research,” J. Biomed. Inform., vol. 46, no. 2, pp. 200–211, 2013.

[48] R. Maier, “Knowledge Management Systems: Information and Communication Technologies for Knowledge Management,” Knowl. Manag., vol. 2, p. 720, 2007.

[49] A. Korhonen, I. Silins, L. Sun, and U. Stenius, “The first step in the development of Text Mining technology for Cancer Risk Assessment: identifying and organizing scientific evidence in risk assessment literature.,” BMC Bioinformatics, vol. 10, p. 303, 2009.

[50] R. Jelier, M. J. Schuemie, A. Veldhoven, L. C. J. Dorssers, G. Jenster, and J. a Kors, “Anni 2.0: a multipurpose text-mining tool for the life sciences.,” Genome Biol., vol. 9, no. 6, p. R96, 2008.

[51] N. Barrett, J. H. Weber-Jahnke, and V. Thai, “Engineering natural language processing solutions for structured information from clinical text: Extracting sentinel events from palliative care consult letters,” Stud. Health Technol. Inform., vol. 192, pp. 594–598, 2013.

[52] H. C. Beck, Mass spectrometry in epigenetic research., vol. 593. 2010.

[53] H. Chen, R. H. L. Chiang, and V. C. Storey, “Business Intelligence and Analytics: From Big Data To Big Impact,” Mis Q., vol. 36, no. 4, pp. 1165–1188, 2012.

[54] D. Chiang, “Hierarchical Phrase-Based Translation ò Ã ¢,” no. May 2006, 2007.

[55] W. W. M. Fleuren and W. Alkema, “Application of text mining in the biomedical domain,” Methods, vol. 74, pp. 97–106, 2015.

[56] C.-H. Lee and S.-H. Wang, “An information fusion approach to integrate image annotation and text mining methods for geographic knowledge discovery,” Expert Syst. Appl., vol. 39, no. 10, pp. 8954–8967, 2012.

[57] D. G. Rajpathak, “An ontology based text mining system for knowledge discovery from the diagnosis data in the automotive domain,” Comput. Ind., vol. 64, no. 5, pp. 565–580, 2013.

[58] N. B. Ngwenya and S. Mills, “The use of weblogs within palliative care: A systematic literature review.,” Health Informatics J., vol. 20, pp. 13–21, 2014.

[59] W. Der Yu and J. Y. Hsu, “Content-based text mining technique for retrieval of CAD documents,” Autom. Constr., vol. 31, pp. 65–74, 2013.

[60] A. Khadjeh Nassirtoussi, S. Aghabozorgi, T. Ying Wah, and D. C. L. Ngo, “Text mining for market prediction: A systematic review,” Expert Syst. Appl., vol. 41, no. 16, pp. 7653–7670, 2014.

[61] Jimeno Yepes and R. Berlanga, “Knowledge based word-concept model estimation and refinement for biomedical text mining,” J. Biomed. Inform., vol. 53, pp. 300–307, 2014.

[62] Hotho, A. Nürnberger, and G. Paaß, “A Brief Survey of Text Mining,” LDV Forum - Gld. J. Comput. Linguist. Lang. Technol., vol. 20, pp. 19–62, 2005.

[63] N. Ur-Rahman and J. a. Harding, “Textual data mining for industrial knowledge management and text classification: A business oriented approach,” Expert Syst. Appl., vol. 39, no. 5, pp. 4729–4739, 2012.

[64] V. C. Pande and A. S. Khandelwal, “A Survey Of Different Text Mining Techniques,” IBMRD’s J. Manag. Res., vol. 3, no. 1, pp. 125–133, 2014.

[65] M. M. Mostafa, “More than words: Social networks’ text mining for consumer brand sentiments,” Expert Syst. Appl., vol. 40, no. 10, pp. 4241–4251, 2013.

[66] N. Ide and K. Suderman, “GrAF: A Graph-based Format for Linguistic Annotations,” Proc. Linguist. Annot. Work., no. June, pp. 1–8, 2007.

[67] H. Shatkay, S. Brady, and A. Wong, “Text as data: Using text-based features for proteins representation and for computational prediction of their characteristics,” Methods, vol. 74, pp. 54–64, 2015.

[68] D. Munková, M. Munk, and M. Vozár, “Data pre-processing evaluation for text mining: Transaction/sequence model,” Procedia Comput. Sci., vol. 18, pp. 1198–1207, 2013.

[69] E. Haddi, X. Liu, and Y. Shi, “The role of text pre-processing in sentiment analysis,” Procedia Comput. Sci., vol. 17, pp. 26–32, 2013.

[70] U. Erra, S. Senatore, F. Minnella, and G. Caggianese, “Approximate TF-IDF based on topic extraction from massive message stream using the GPU,” Inf. Sci. (Ny)., vol. 292, pp. 143–161, 2015.

[71] Trstenjak, S. Mikac, and D. Donko, “KNN with TF-IDF based framework for text categorization,” Procedia Eng., vol. 69, pp. 1356–1364, 2014.

[72] M. Konopka, “Biomedical ontologies—A review,” Biocybern. Biomed. Eng., vol. 35, no. 2, pp. 75–86, 2015.

[73] T. R. Inniss, J. R. Lee, M. Light, M. a. Grassi, G. Thomas, and A. B. Williams, “Towards applying text mining and natural language processing for biomedical ontology acquisition,” Proc. 1st Int. Work. Text Min. Bioinforma. - TMBIO ’06, p. 7, 2006.

[74] Cedeño and M. Vargas-lombardo, “Framework Based on Ontologies for Palliative Care of Patients with Breast Cancer,” vol. 37, no. 3, pp. 49–57, 2015.