International Journal of Scientific & Technology Research

Home About Us Scope Editorial Board Blog/Latest News Contact Us
10th percentile
Powered by  Scopus
Scopus coverage:
Nov 2018 to May 2020


IJSTR >> Volume 5 - Issue 6, June 2016 Edition

International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616

Effect Of Explant Source And Different Medium Culture On Friable Embryogenic Callus Induction Of Four Cultivars Of Cassava (Manihot Esculenta Crantz)

[Full Text]



Simplice Prosper Yandia, Christophe Bernard Gandonou, Semballa Silla, Innocent Zinga, Dominique Dambier, Fatiou Toukourou



Friable Embryogenic Callus, Immature leave lobes, Apical Bourgeon, cassava, GD, MS, Picloram, BAP.



In order to obtain Friable Embryogenic Callus (FEC) for protoplast isolation, we have evaluated in this research the competance for Friable Embryogenic Callus (FEC) of four cassava cultivars M61/033, Rendre, Yalipe and Six-mois in media containing MS supplemented with 8mg/l 2,4-D; MS supplemented with 10 mg/l BAP and GD supplemented with 12mg/l picloram using apical bud (AB) and immature leaves lobes (ILL) as explants. In general, in the medium GD+12mg/l picloram, the highest efficiencies of FEC ranged from 58 % to 87 % and the highest score of FEC ranged from 4.2 to 5.4 with explants AB, however we have observed with explants ILL, the efficiencies of somatic embryos ranged form 41% to 75% and the score ranged from 4.1 to 4.4. The mediums MS2+8 mg/l 2,4-D have induced with explants AB, the efficiencies of FEC ranged from 43% to 57% and the score ranged from 3.1 to 3.8, however with ILL explants the efficiencies of FEC ranged from 39 % to 49 % and the score ranged from 2.9 to 3.7. The least FEC were observed in the medium MS2+10 mg/l BAP with BA explants, however the efficiencies ranged from 6% to 11% and the score ranged from 1.1 to 1.8. Whereas the efficiencies of FEC with ILL explants ranged from 4% to 7 % and the score ranged from 0.5 to 0.8. All of four cultivars showed capability of producing FEC although their efficiency varied according to gonotype donors explants and medium taking into acount. Abbreviations : GD : Gressoff and Doy, MS : Murashige and Skoog, 2,4-dichloro phenoxyacetic acid, BAP : Benzylamino-purin-Acid , AB : Apical Bud, ILL : Immature Leaves lobes



[1] FAO, 2008ab. Cassava for food and energy security. FAO Media Centre, Rome. http://www.fao.org/newsroom/en/news/2008/1000899/index.html. Accessed Oct 2010.

[2] FAO, 2012. Agricultural Statistics. Food and Agricultural Organization of the United Nations. Rome. http://faostat.fao.org. Accessed July 2008.

[3] F.I. Nweke, D.S.C Spencer, J.K Lynam, 2002. The cassava transformation: Africa’s best-kept secret. Michigan University Press, East Lansing.

[4] C. Tisserant, 1953. Lʹagricultue dans les savanes de lʹOubangui. Bulletin de lʹInstitut des études Centrafricaines (Brazzaville), nouvelle serie, 6 : 27.

[5] N. Mallouhi, J.M. Kafara, 2002. La culture du manioc en Centrafrique. CTP/ICRA 16p. (Rapport technique).

[6] UN, 2010. Millennium development goals. UN Department of Public Information, 301 Rome. http://www.un.org/millenniumgoals. Accessed Oct 2010.

[7] M.A. El-Sharkawy, 2006. International research on cassava photosynthesis, productivity, eco physiology, and responses to environmental stresses in the tropics. Photosynthetica 44: 481-512

[8] A.M. Fermont, A. Babirye, H.M. Obiero, S. Abele, K.E. Giller KE, 2010. False beliefs on the socio-economic drivers of cassava cropping. Agron Sustain Dev. 30:433-444

[9] H. Ceballos, T. Sanchez, N. Morante, M. Fregene, D. Dufour, A.M. Smith, K. Denyer, J.C. Perez, F. Calle, C. Mestres, 2007. Discovery of an amylose-free starch mutant in cassava (Manihot esculenta Crantz). J Agric Food Chem 55:7469–7476.

[10] R. Sayre, J.R. Beeching, E.B. Cahoon, C. Egesi, C. Fauquet, J. Fellman, M. Fregene, W. Gruissem, S. Mallowa, M. Manary, 2011. The BioCassava plus program: biofortification of cassava for sub-Saharan Africa. Annu Rev Plant Biol 62:251–272.

[11] J. Liu, Q. Zheng, K.K. Gadidasu, P. Zhang, 2011. Cassava genetic transformation and its application in breeding. J Integr Plant Biol 53:552–569.

[12] K.J.J.M. Raemakers, E. Sofiari, E. Jacobsen, R.G.F. Visser, 1997. Regeneration and transformation of cassava. Euphytica 96, 153–161.

[13] P. Gresshoff, C. Doy, 1974. Derivation of a haploid cell line from Vitis vinifera and the importance of the stage of meiotic development of anthers for haploid culture of this and other genera. Zeitschrift für Pflanzenphysiologie 73, 132–141.

[14] N.J. Taylor, M.V. Masona, R.H.T. Carcamo, C. Schöpke, C.M. Fauquet, 2001. Production of embryogenic tissue and regeneration of transgenic plants in cassava (Manihot esculenta Crantz). Euphytica 120, 25–34.

[15] J.A. Stamp, G.G. Henshaw, 1982. Somatic embryogenesis in cassava. Zeitschrift für Pflanzenphysiologie 105, 183–187.

[16] J. Atehnkeng, V.O. Adetimirin, S.Y.C. Ng, 2006. Exploring the African cassava (Manihot esculenta Crantz) germplasm for somatic embryogenic competence. African Journal of Biotechnology 5, 1324–1329.

[17] K.E. Danso, B.V. Ford-Lloyd, 2002. Induction of high-frequency somatic embryos in cassava for cryopreservation. Plant Cell Reports 21, 226–232.

[18] M. Guohua, X. Qiusheng, 2002. Induction of somatic embryogenesis and adventitious shoots from immature leaves of cassava. Plant Cell, Tissue and Organ Culture 70, 281–288.

[19] M. Guohua, 1998. Effects of cytokinins and auxins on cassava shoot organogenesis and somatic embryogenesis from somatic embryo explants. Plant Cell, Tissue and Organ Culture 54, 1–7.

[20] B.B. Hankoua, S.Y.C. Ng, I. Fawole, J. Puonti-Kaerlas, M. Pillay, A.G.O. Dixon, 2005. Regeneration of a wide range of African cassava genotypes via shoot organogenesis from cotyledons of maturing somatic embryos and conformity of the field-established regenerants. Plant Cell, Tissue and Organ Culture 82, 221–231.

[21] B.B. Hankoua, N.J. Taylor, S.Y.C. Ng, I. Fawole, J. Puonti-Kaerlas, C. Padmanabhan, J.S. Yadav, C.M. Fauquet, A.G.O. Dixon, V.N. Fondong, 2006. Production of the first transgenic cassava in Africa via direct shoot organogenesis from friable embryogenic calli and germination of maturing somatic embryos. African Journal of Biotechnology 5, 17001712.

[22] P. Zhang, G. Legris, P. Coilin, J. Puonti-Kaerlas, 2000. Production of stably transformed cassava plants via particle bombardment. Plant Cell Reports 19, 939–945.

[23] P. Zhang, J. Puonti-Kaerlas, 2005. Regeneration of transgenic cassava from transformed embryogenic tissues. In: Peña, L. (Ed.), Transgenic Plants: Methods and Protocols. Humana press Inc., New Jersey, pp. 165–176.

[24] L. Szabados, R. Hoyos, W. Roca, 1987. In vitro somatic embryogenesis and plant regeneration of cassava. Plant Cell Reports 6, 248–251.

[25] L. Saelim, S. Phansiri, S. Netrphan, M. Suksangpanomrung, J. Narangajavana, 2006. Optimization of in vitro cyclic somatic embryogenesis and regeneration of the Asian cultivars of cassava (Manihot esculenta crantz) for genetic manipulation system. Global Journal of Biotechnology and Biochemistry 1, 7–15.