International Journal of Scientific & Technology Research

Home About Us Scope Editorial Board Blog/Latest News Contact Us
10th percentile
Powered by  Scopus
Scopus coverage:
Nov 2018 to May 2020


IJSTR >> Volume 2- Issue 6, June 2013 Edition

International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616

Biosorption Of Fe3+, Pb2+, Zn2+, Cr3+ And Cd2+ From Aqueous Solution Using Immobilized Bombax Costatum Leaves.

[Full Text]



S.A.Osemeahon, J.T. Barminas, M.A. Hamma Adama



Key words; aqueous solution, heavy metal ions, Immobilized Bombax costatum leaves, sorption capacity.



ABSTRACT: The sorption capacity of Immobilized Bombax costatum leaves (IBCL) for the removal of metal ions (Fe3+, Pb2+, Zn2+, Cr3+ and Cd2+) was studied using batch experiments. The residual metal ion concentrations were investigated using Atomic Absorption Spectrophotometer (AAS). The influence of factors such as contact time, initial concentration, ionic strength, pH and temperature were investigated. The metal ions sorption capacity by IBCL decreases with increasing ionic strength but increases with increasing pH values and initial metal ion concentration. The sorption rate for the metal ions was rapid for the first 30 minutes and equilibrium was established within 2 hrs. The maximum sorption capacity for Fe3+, Pb2+, Cd3+, Cr2+, and Zn2+ were found to be 85.56, 80.48, 76.63, 73.84 and 70.35 respectively. From the experimental work on the sorption capacity of IBCL sorbent, our result showed that the abundant but presently wasted Bombax Costatum leaves could be turned into an environmentally friendly, and cost effective sorbent for the removal of heavy metal ions from waste water.



[1]. Zvinowanda, C. M.; Okonkwo, J. O.; Shabalala, P. N.; Agyei, N. M., (2009). A novel adsorbent for heavy metal remediation in aqueous environments. Int. J. Environ. Sci. Tech., 6 (3), 425-434.

[2]. Wuyep, P. A; Chuma, A. G., Awodi, S. and Nok A. J. (2007). Biosorption of Cr, Mn, Fe, Ni and Cu metals from refinery effluent by calcium alginate immobilized mycelia of polyporus squamosunolos; Sc. Res.Essay, 2(7): 217-221.

[3]. Saeed, A.; Iqbala, M.; Akhtar, M. W., (2005). Removal and recovery of lead (II) from single and multimetal (Cd, Cu, Ni, Zn) solutions by crop-milling waste (black gram husk). J. Hazard. Mater., 117 (1), 65–73.

[4]. Yu, B.; Zhang, Y.; Shukla, A.; Shukla, S. S.; Dorris, K. L., (2001). The removal of heavy metals from aqueous solutions by sawdust adsorption- removal of lead and comparison of its adsorption with copper. J. Hazard. Mater., 84 (1), 83-94.

[5]. Lee W. and Lin G., (2000). Super-sorbent polymeric material viii: swelling behavior of polymeric cross-linked poly (sodium acrylate-co-trimethyl¬metaacrylolioxyethyl ammonium iodide) in aqueous solution. J. Appl. Polymer Sc. 79: 1165- 1674

[6]. Malakootian, M.; Nouri, J.; Hossaini, H., (2009). Removal of heavy metals from paint industry’s wastewater using Leca as an available adsorbent. Int. J. Environ. Sci. Tech., 6 (2), 183-190.

[7]. Wu S and Chen JP, (2000). EDTA study on EDTA chelated copper adsorption by granulated activated carbon, Society for Chemical Industry, J. Chem. Technol. Biotechnol. 75:791-797

[8]. Shama S.A. Moustafa M.E. and Gad M.A. (2010) Removal of heavy metals from Aqueous Solution Using Eichhornia Crassipes Port. Electrochim. Acta 28 125-133 13 3

[9]. Qi, B. C.; Aldrich, C., (2008). Biosorption of heavy metals from aqueous solutions with tobacco dust. Biores. Tech., 99 (13), 5595-5601.

[10]. Krishnani, K. K.; Meng, X.; Christodoulatos, C.; Boddu, V. M., (2008). Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk. J. Hazard. Mater., 153 (3), 1222-1234.

[11]. Onundi, Y. B.; Mamun, A. A.; Al Khatib, M. F.; Ahmed, Y. M., (2010). Adsorption of copper, nickel and lead ions from synthetic semiconductor industrial wastewater by palm shell activated carbon. Int. J. Environ. Sci. Tech., 7 (4), 751-758.

[12]. Kumar U., Bandyopadhyay M. (2006) Sorption of cadmium from aqueous solution using pretreated rice husk, Biores. Tech. 97 104-109. 10.1016/j.biortech.2005.02.027

[13]. Meunier N. Blais J.F.and Tyagi R.D. (2004) Removal of heavy metals from acid soil leachate using cocoa shells in a batch counter – current sorption process,Hydrometallurgy73,225235.10.1016/j.hydromet.2003.10.011

[14]. Sheng P.X. Ting Y.P. Chen J.P and Hong L. (2004) Sorption of lead, copper, cadmium, zinc and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms, J.Colloid. Interface Sci. 275 131-141.10.1016/j.jcis.2004.01.036

[15]. Mahvi, A. H., (2008). Application of agricultural fibers in pollution removal from aqueous solution. Int. J. Environ. Sci. Tech., 5 (2), 275-285.

[16]. Chamarthy, S., Chung, W., Marshall W. E., (2001). Adsorption of Selected Toxic Metals by Modified peanut shells. J. Chem. Technol Biotechnol. 75:791-797

[17]. Volesky, B. (1998), Removal and Recovery of Heavy Metal by Biosorption: In biosorption of heavy metal. Boston CRC Press pp743

[18]. Osemeahon, S. A, Barminas J. T. Aliyu B. A and Nkafamiya, I.I. (2008). Application of grafted membranes for sorption of Cd2+, Fe2+ and Zn2+in aqueous solution. J. Pure & Appl. 2(3):32-36

[19]. Osemeahon, S. A, Bannmas J. T., Aliyu B. A, Maina H. M. (2007) Preliminary evaluation on the application of grafted membrance for sorption of copper and lead ions in aqueous solution. Inter. J. physical Sc. 2(11): 294-299.

[20]. Barminas J. T. and Osemeahon, S. A; (2005) Development of sodium alginate and konkoli gum-grafted-polyacryamide blend membrance. Sc. Forum J. pure and Appl. Sci. 1: 70-79

[21]. Mahavi, P. (2005) Use of tea waste as a bio-absorbent for removal of heavy metal from waste water. Chemosphere 54: 22-29

[22]. Yenpeng, T. and Sung, G. (2000). Use of polyvinyl alcohol as a cell immobilization matrix for copper biosorption by yeast cells. J. Chem.Technol. Biotechnol. 75:541-546

[23]. Kuyucak N. and Volesky, B. (1998) Biosorbents for recovery of metals from industrial solutions. Biotechnol Left., 10 (2): 137- 142

[24]. Alabuk A, T Akar, S. Tumali and Gedikli S. (2007). Biosorption of Ph (ii) by industrial main of Saccharomyces cerevisiae immobilized on the biomatrix of conebiomass of pinus nigra: Equilibrium and mechanism analysis. J. Chem. Eng., 131: 293- 300

[25]. Xiao, C.; Lihui W. and Lina Z., (2002). Improvement of physical properties of cross linked alginate and carboxymethyl Konjac glucomannan blend films J. Appl. Polymer. (84):2554-2560

[26]. Toti, S. U., Mahadevappa Y., Kumaresh K., Soppimath S. and Aminabhavi T. M. (2002). Pervaporation separation of water and acetic acid mixture through blend membrance of sodium alginate and guar gum grafted polycrylamide. J. Appl. Polymer Sc. 83:259-277

[27]. Ju, K. H., Kim, S. J., Seon J. K and Lee J. M., (2002). pH/temperature- responsive semi¬-IPN hydrogels copose of alginate and poly(N-isopropylacrylamide). J. Appl. Polymer sci., (83): 1128- 1139

[28]. Ogali R. E.; Akaranta, O. and Aririguzo, V. O.; (2008) Removal of some metal ion from aqueous solution using orange mesocarp, Afr. J. Biotechnol. Vol. 7 (17) pp3073- 3076

[29]. Lalhruaitluanga, H.; Jayaram, K.; Prasad, M. N. V.; Kumar, K. K., (2010). Lead (II) adsorption from aqueous solutions by raw and activated charcoals of Melocanna baccifera Roxburgh (bamboo) A comparative study. J. Hazard. Mater., 175 (1-3), 311-318.