IJSTR

International Journal of Scientific & Technology Research

Home About Us Scope Editorial Board Blog/Latest News Contact Us
0.2
2019CiteScore
 
10th percentile
Powered by  Scopus
Scopus coverage:
Nov 2018 to May 2020

CALL FOR PAPERS
AUTHORS
DOWNLOADS
CONTACT

IJSTR >> Volume 11 - Issue 01, January 2022 Edition



International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616



Modeling And Simulation Of Output Characteristics Of Metal Oxide Semiconductor Field Effect Transistor For Switching Application

[Full Text]

 

AUTHOR(S)

Babatunde S. Emmanuel, Paul O. Michael

 

KEYWORDS

Doping, semiconductor, substrate, transistor, MOSFET, electronic, switch

 

ABSTRACT

The Metal Oxide Semiconductor Field Effect Transistor (MOSFET) is an electronic device widely used as the building block in all commercial processors, memories, and digital integrated circuits (ICs). MOSFET is fabricated from semiconductor materials such as silicon. This paper presents the simulation study of the output characteristics of silicon MOSFET with a p-type substrate and n-type doped regions for source and drain interfaces as a switching device. The significance of the results obtained in the analysis is that at the applied input gate voltage greater than the threshold voltage of 1.2V, the MOSFET switch operates in the ON state while at input voltage lower than the threshold voltage indicated that the device is in the OFF state. In addition, at a gate voltage greater than the threshold voltage, the output drain current is directly proportional to the applied gate voltage. Perhaps, more significantly, as the value of the applied gate voltage increases the output drain current increases proportionally. These simulated characteristics of the MOSFET are therefore suitable for electronic switching applications.

 

REFERENCES

[1] Ytterdal, T., Cheng Y. and Fjeldly T. A. (2003) Device Modeling for Analog and RF CMOS Circuit Design. John Wiley & Sons, Ltd; ISBN: 0-471-49869-6
[2] Sack, M., Keipert, S., Hochberg, M., Greule, M., and Mueller, G. (2013). Design Considerations for a Fast Stacked-MOSFET Switch. IEEE Transactions on Plasma Science, 41(10), 2630–2636. doi:10.1109/tps.2013.2267395
[3] Jagannath, S., Agarwal, N., Balasubramaniasarma, S., and Ma, K. W. (2020). Design and Analysis of Single SiC MOSFET Switch Flyback Converter based Control Power Supply for Renewable Applications. 2020 International Conference on Power, Instrumentation, Control and Computing (PICC). doi:10.1109/picc51425.2020.936234
[4] Fu, J., Zhang, Z., Liu, Y.F., and Sen, P. C. (2012). MOSFET Switching Loss Model and Optimal Design of a Current Source Driver Considering the Current Diversion Problem. IEEE Transactions on Power Electronics, 27(2), 998–1012. doi:10.1109/tpel.2011.2138163
[5] Deshpande, A., and Luo, F. (2018). Practical Design Considerations for a Si IGBT + SiC MOSFET Hybrid Switch: Parasitic Interconnect Influences, Cost and Current Ratio Optimization. IEEE Transactions on Power Electronics, 1–1. doi:10.1109/tpel.2018.2827989
[6] Das, G., De, M., and Mandal, K. K. (2018). Design of Flyback Converter by Using an Ideal Switch and a MOSFET Switch. 2018 IEEE Electron Devices Kolkata Conference (EDKCON). doi:10.1109/edkcon.2018.8770407
[7] Dennard, R. H., Gaensslen, F. H., Rideout, V. L., Bassous, E., and LeBlanc, A. R. (1974). Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE Journal of Solid-State Circuits, 9(5), 256–268. doi:10.1109/jssc.1974.1050511
[8] Potocny, M., Brenkus, J., and Stopjakova, V. (2019). High side power MOSFET switch driver for a low-power AC/DC converter. 2019 IEEE 22nd International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS). doi:10.1109/ddecs.2019.8724667
[9] Helong Li, & Munk-Nielsen, S. (2014). Detail study of SiC MOSFET switching characteristics. 2014 IEEE 5th International Symposium on Power Electronics for Distributed Generation Systems (PEDG). doi:10.1109/pedg.2014.6878691
[10] Saxena R. S. and Kumar M. J. (2008) A New Strained-Silicon Channel Trench-gate Power MOSFET: Design and Analysis; IEEE Trans. on Electron Devices, Vol.55, pp.3229-3304, November 2008
[11] Cao, W., and Banerjee, K. (2020). Is negative capacitance FET a steep-slope logic switch? Nature Communications, 11(1). doi:10.1038/s41467-019-13797-9
[12] Tang, T. andBurkhart C. (2008) Hybrid MOSFET/Driver for Ultra-Fast Switching; SLAC-PUB-13269; Accessed from https://www.slac.stanford.edu/pubs/slacpubs/13250/slac-pub-13269.pdf in November 2021
[13] Xu W. and Friedman E. G. (2005) Clock Feedthrough in CMOS Analog Transmission Gate Switches Analog Integrated Circuits and Signal Processing, Springer; 44, 271–281.
[14] Kozak, Joseph P., Khai D. T. Ngo, Douglas J. DeVoto, and Joshua J. Major (2018) “Trends in SiC MOSFET Threshold Voltage and ON-Resistance Measurements from Thermal Cycling and Electrical Switching Stresses: Preprint.” Golden, CO: National Renewable Energy Laboratory. NREL/CP-5400-70550. https://www.nrel.gov/docs/fy18osti/70550.pdf.
[15] Srivastava, V. M., Yadav, K. S., and Singh, G. (2011). Design and performance analysis of double-gate MOSFET over single-gate MOSFET for RF switch. Microelectronics Journal, 42(3), 527–534. doi:10.1016/j.mejo.2010.12.007