International Journal of Scientific & Technology Research

Home About Us Scope Editorial Board Blog/Latest News Contact Us
10th percentile
Powered by  Scopus
Scopus coverage:
Nov 2018 to May 2020


IJSTR >> Volume 4 - Issue 1, January 2015 Edition

International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616

Fabrication Of Gold Nanoparticles-Modified Glassy Carbon Electrode And Its Application For Voltammetric Detection Of Cr(III)

[Full Text]



Santhy Wyantuti, Yeni Wahyuni Hartati, M. Lutfi Firdaus, Camellia Panatarani, Roekmiati Tjokronegoro



Keywords: Gold nanoparticles, glassy carbon electrode, trivalent chromium, voltammetry.



Abstract: A sensitive and selective differential pulse stripping voltammetric (DPSV) method is presented for the determination of trace amount Cr(III) using glassy carbon electrode (GCE) modified with gold nanoparticles (AuNPs). The method includes AuNPs fabrication and self-assembly GCE modification. This processes replaced the –H groups with –NH2 groups on the surfaces of GCE which increased the number of AuNPs attached to it. The GCE modified with AuNPS was used as electrochemical sensor of Cr(III) for the first time that gave a wide linear range from 0.5 to 75 ppb and a very low detection limit of 10 ppt (equivalent to 0.19 nM). The electrode exhibited high reproducibility in repetitive measurements with a relative standard deviation better than 2.4%. The effect of interfering ions study showed that Cu(II), Cd(II), Zn(II) Cr(VI), Ni(II) and Fe(III) ions did not have a significant effect on the measurement.



[1] R. Rudnick, S. Gao, Composition of the continental crust, Elsevier-Pergamon, Oxford, UK, 2003.

[2] J. Gaillardet, J. Viers, B. Duprι, Trace elements in river waters, Elsevier-Pergamon, Oxford, UK, 2003.

[3] K. Bruland, Lohan MC, The oceans and marine geochemistry, Elsevier-Pergamon, Oxford, UK, 2003.

[4] Y. Sohrin, K.W. Bruland, "Global status of trace elements in the ocean", TrAC Trends Anal. Chem., vol. 30, pp. 1291–1307, 2011.

[5] R. Saha, R. Nandi, B. Saha, "Sources and toxicity of hexavalent chromium", J. Coord. Chem., vol. 64, pp. 1782–1806, 2011.

[6] D. Adriano, Trace elements in terrestrial environments: biogeochemistry, bioavailability, and risks of metals, Springer, Berlin, 2001.

[7] J. Kotaś, Z. Stasicka, "Chromium occurrence in the environment and methods of its speciation"., Environ. Pollut., vol. 107, pp. 263–83, 2000.

[8] B. Tang, T. Yue, J. Wu, Y. Dong, Y. Ding, H. Wang, "Rapid and sensitive spectrofluorimetric determination of trace amount of Cr(III) with o-vanillin-8-aminoquinoline", Talanta, vol. 64, pp. 955–60, 2004.

[9] M. Kaneko, M. Kurihara, S. Nakano, T. Kawashima, "Flow-injection determination of chromium(III) by its catalysis on the oxidative coupling of 3-methyl-2-benzothiazolinone hydrazone with N-ethyl-N-(2-hydroxy-3-sulfopropyl)-3-methoxyaniline", Anal. Chim. Acta, vol. 474, pp. 167–176, 2002.

[10] Y. Chen, I. Lee, Y. Sung, S. Wu, "Triazole functionalized gold nanoparticles for colorimetric Cr3+ sensing", Sensors Actuators B Chem. vol. 188, pp. 354–359, 2013.

[11] B. Gammelgaard, Y. Liao, O. Jψns, "Improvement on simultaneous determination of chromium species in aqueous solution by ion chromatography and chemiluminescence detection", Anal. Chim. Acta, vol. 354, pp. 107–113, 1997.

[12] R.M. Cespσn-Romero, M.C. Yebra-Biurrun, M.P. Bermejo-Barrera, "Preconcentration and speciation of chromium by the determination of total chromium and chromium(III) in natural waters by flame atomic absorption spectrometry with a chelating ion-exchange flow injection system", Anal. Chim. Acta, vol. 327, pp. 37–45, 1996.

[13] K. Kiran, K.S. Kumar, B. Prasad, K. Suvardhan, R.B. Lekkala, K. Janardhanam, "Speciation determination of chromium(III) and (VI) using preconcentration cloud point extraction with flame atomic absorption spectrometry (FAAS)", J. Hazard. Mater., vol. 150, pp. 582–586, 2008.

[14] H. Bag, A.R. Turker, M. Lale, A. Tunceli, "Separation and speciation of Cr(III) and Cr(VI) with Saccharomyces cerevisiae immobilized on sepiolite and determination of both species in water by FAAS", Talanta, vol. 51, pp. 895–902, 2000.

[15] S. Hirata, Y. Umezaki, M. Ikeda, "Determination of chromium(III), titanium, vanadium, iron(III), and aluminum by inductively coupled plasma atomic emission spectrometry with an on-line preconcentrating ion-exchange column", Anal. Chem., vol. 58, pp. 2602–2606, 1986.

[16] S. Hirata, K. Honda, O. Shikino, N. Maekawa, M. Aihara, "Determination of chromium (III) and total chromium in seawater by on-line column preconcentration inductively coupled plasma mass spectrometry", Spectrochim. Acta Part B At. Spectrosc., vol. 55, pp. 1089–1099, 2000.

[17] Christopher M. A. Brett, Ana Maria Oliveira Brett, Electrochemistry: Principles, Methods, and Applications, Oxford Science Publications, UK, 1993.

[18] F.W. Campbell, R.G. Compton, "The use of nanoparticles in electroanalysis: an updated review", Anal. Bioanal. Chem., vol. 396, pp. 241–259, 2010.

[19] W.W. Zhu, N.B. Li, H.Q. Luo, "Simultaneous determination of chromium(III) and cadmium(II) by differential pulse anodic stripping voltammetry on a stannum film electrode", Talanta, vol. 72, pp. 1733–1737, 2007.

[20] E. Chatzitheodorou, A. Economou, A. Voulgaropoulos, "Trace Determination of Chromium by Square-Wave Adsorptive Stripping Voltammetry on Bismuth Film Electrodes", Electroanalysis. vol. 16, pp. 1745–1754, 2004.

[21] M.N. Bui, C.A. Li, K.N. Han, X. Pham, G.H. Seong, "Simultaneous detection of ultratrace lead and copper with gold nanoparticles patterned on carbon nanotube thin film", Analyst, vol. 137, pp. 1888–1894, 2012.

[22] Y. Wei, R. Yang, X. Yu, L. Wang, J. Liu, X. Huang, "Stripping voltammetry study of ultra-trace toxic metal ions on highly selectively adsorptive porous magnesium oxide nanoflowers", Analyst, vol. 137, pp. 2183–2191, 2012.

[23] X. Dai, R.G. Compton, "Direct electrodeposition of gold nanoparticles onto indium tin oxide film coated glass: Application to the detection of arsenic(III)", Anal. Sci., vol. 22, pp. 567–570, 2006.

[24] K. Saha, S.S. Agasti, C. Kim, X. Li, V.M. Rotello, "Gold nanoparticles in chemical and biological sensing", Chem. Rev., vol. 112, pp. 2739–2779, 2012.

[25] J. Hong, W. Wang, K. Huang, W.-Y. Yang, Y.-X. Zhao, B.-L. Xiao, et al., "A highly efficient nano-cluster artificial peroxidase and its direct electrochemistry on a nano complex modified glassy carbon electrode", Anal. Sci., vol. 28, pp. 711–716, 2012.

[26] B. Liu, L. Lu, M. Wang, Y. Zi, "A study of nanostructured gold modified glassy carbon electrode for the determination of trace Cr(VI)", J. Chem. Sci., vol. 120, pp. 493–498, 2008.

[27] W. Jin, G. Wu, A. Chen, "Sensitive and selective electrochemical detection of chromium (VI) based on gold nanoparticle-decorated titania nanotube arrays", Analyst. vol. 139, pp. 235–241, 2014.

[28] G. Frens, "Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions", Nat. Phys. Sci., vol. 241, pp. 20–22, 1973.

[29] L. Zeng, H. Wang, X. Bo, L. Guo, "Electrochemical sensor for amino acids based on gold nanoparticles/macroporous carbon composites modified glassy carbon electrode", J. Electroanal. Chem., vol. 687, pp. 117–122, 2012.

[30] J. Fink, C.J. Kiely, D. Bethell, D.J. Schiffrin, "Self-Organization of Nanosized Gold Particles", Chem. Mater., vol. 10, pp. 922–926, 1998.

[31] R. Tian, T.N. Rao, Y. Einaga, J. Zhi, "Construction of Two-Dimensional Arrays Gold Nanoparticles Monolayer onto Boron-Doped Diamond Electrode Surfaces", Chem. Mater., vol. 18, pp. 939–945, 2006.

[32] J.N. Miller, J.C. Miller, Statistics and Chemometrics for Analytical Chemistry, Pearson/Prentice Hall, 2010.

[33] C.M. Welch, M.E. Hyde, O. Nekrassova, R.G. Compton, "The oxidation of trivalent chromium at polycrystalline gold electrodes", Phys. Chem. Chem Phys., vol. 6, pp. 3153, 2004.