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ABSTRACT: In today‟s world, software testing with statistical fault localization technique is one of most tedious, expensive and time consuming acti vity. 
In faulty program, a program element contrast dynamic spectra that estimate location of fault. There may have negative impact from coincidental 
correctness with these technique because in non failed run the fault can also be triggered out and if so, disturb the assessment of fault location. Now 

eliminating of confounding rules on the recognizing the accuracy. In this paper coincidental correctness which is an effective interface is the reason of 
success of fault location. We can find out fault predicates by distribution overlapping of dynamic spectrum in failed runs and non failed runs and slacken 
the area by referencing the inter class distances of spectra to clamp the less suspicious  candidate. After that we apply coverage matrix base reduction 

approach to reduce the test cases of that program and locate the fault in that program. Finally, empirical result shows that our technique outshine with 
previous existing predicate based fault localization technique with test case reduction. 
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1    INTRODUCTION  
TODAY‟S software and system of software are going to be 
more complicated. The quality of software is becoming more 
important and effective mechanism for academia and 
industries. The failed program is the reason for fault existing in 
a program. Now to overcome from this, the programmer fixes 
a program fault and locates it first. There are several fault 
localization technique exist. 
 

 
 

Figure 1 
 

Although the statistic fault localization (SFL) technique is 

reported successful and its effectiveness to figure out faults 
areunavoidable influenced by the behavior of input data. There 
is a phenomenon referred to as coincidental correctness 
thatreflects, no failure is detected even though the fault has 
been exercised [18]. The part of non failed runs that 
coincidentally manifest no abnormal behavior may have a 
negative effect on the accuracy ofSFL technique because their 
profile is closer to those of the failed runs. There is the straight 
idea to discriminate the coincidental correctness runs and 
remove them from input[6,12]. However the discriminate of 
coincidental correctness may give feasibility and effectiveness. 
The advance experiment gave the pessimistic report that the 
false negative related to the discrimination of coincidental 
correctness runs is above 50% for one of the three experiment 
subject[13]. Now the challenging and interesting question is 
arise that can we allow the presence or existing of coincidental 
correctness and figure out a fault with the presence of it. The 
test suit reduction technique is overcome of it with coverage 
base matrix (program without loop) and path vector base 
reduction (program with loop). In this paper we examine the 
nature and behavior of dynamic spectra for different program 
predicates with the existence of coincidental correctness and 
propose a technique to find out the most fault relevant 
predicates. We emphasis it with two step. In our first step, 
seize the dynamic spectra of program predicate in case of 
both failed and non failed runs respectively. Then we move on 
to the concept of calculating overlapping of the spectrum 
distribution in both the cases i.e failed and non failed runs to 
find out the predicates whose existing lead to the triggering of 
a fault. Next we slacken the region by calculating the inter 
class distance for the spectra in two bodies(failed and non 
failed) to clamp interested less dubious predicates. In the 
second step we maintain the coverage matrix of that program 
with its failed and passed statement respectively. Now with the 
help of referencing their calculated dubious we can sort the 
test cases by applying AND operation with every failed 
statement and then find the fault localization requirement 
vector (FLreq) and find the reduce test case. Experiment 
shows that our technique 
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Figure 2 
 

outshine some representative existing predicate based SFL 
technique. Our paper is mannered as follows: In first section 
we propose a technique that estimates fault localization with 
the presence of coincidental correctness. It is requisite to be 
more accurate since there is no longer a need to discriminate 
the coincidental correctness runs.In second section of this 
paper we present our motivation and research aim.Section 
third elaborates our model to the related work. Section four 
gives the experimental evolution andmeasurement of the 
paper.Section five gives the related work.And finally we 
conclude our paper on section six. 
 

2   MOTIVATION 
 

2.1   THE SAMPLE PROGRAM 
There is the example in Figure 2 shows a piece of code to find 
out the mid value among three inputs. A fault is seeds in the 
statement S7 which may be a reason of the program to 
generate an incorrect output. We take three integer as an input 
to begin the program and permute them to create eight test 
cases named as; T1, T2, T3, T4 ,T5,T6, T7, T8. We notices that 
the test cases from T4, T5and T6exercised the faulty statement 
but only T7 and T8 give unexpected output. Thus we noted 
down test case T7 and T8 as failed runs and other execution as 
non fails runs. To make our discussion easier we introduce the 
word coincidental run, to name the program execution over T4, 
T5 and T6where the fault is figured but no state is figured as 
faulty observable. To differentiate from them we introduce the 
term successful runs to name the program runs over T1, T2and 
T3. Now we are going to install 12 predicate in the program 
named as P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12 in 
above Figure 2. We also consider their dynamic spectrum in 
the form of x:y in the program which indicate the number of 
times the predicate is evaluated as true and evaluated as false 
respectively. Let us take first row to illustrate. In the test case 
of T1 predicate “P1: x=a” is evaluated false (0) ones and never 
evaluated true. Thus we calculate dynamic spectra of 
predicate p1 as “0:1”in that run 
 

2.2 INSPIRING OUR WORK 
As there is no loop in the program and it is execute 
sequentially, we introduce four categories of predicates named 
as: Neutral, Fault leading, Fault led and Balanced predicate 

Now the twelve predicate are partitioned into group in which 
P1, P2 and P3 is neutral predicate P4, P5 and P6 fault leading 
predicate P7,P8and P9 is balanced predicate and P10, P11 and 
P12 is fault led predicates. Here we notice that predicate P4 

most fault relevant predicate is fault leading predicate with 
such classification. In neutral predicate its dynamic spectra in 
every run resemble each other. We can understood as that 
there are very less chances to make relationship with fault so 
that their behavior makes less difference in every runs either it 
is a failed runs or non failed runs. If we can take the predicate 
P1 in the test case T4 to illustrate predicate “P1: x= =a” lies on 
the first statement and always evaluate false and its spectra in 
all the runs are equal. For a fault leading predicates there is a 
difference in its dynamic spectra in coincidental runs (the non 
failed in coincidental correctness happening) are identical to 
those in run but different from those in successful runs (the 
non failed without coincidental correctness happening). We 
use the symbol “≠” and “≈” in Figure 2 to make a better view. 
We can elaborate is as, the execution paths leading to a fault 
often concentrate into small clusters as reported in [6]. That‟s 
why this predicate may revealed the similar dynamic spectra in 
both coincidental runs and failed runs. Let us take predicate 
P4 and test case T4 to illustrate. Predicate “P4: x<y” give false 
which skip the statement S5 to triggers the false the statement 
S7. This is the only legal way that leads the fault and for 
predicate p4 in test case T4, their dynamic spectra are same to 
those in T7 and T8 and different from T1, T2 and T3.  In fault led 
predicate the dynamic spectra are identical for coincidental run 
to those in the successful run and different from failed runs. 
We can elaborate it as if the fault is exercised the faulty state 
may be coincidentally not propagate and the led program still 
behave as normal. That‟s why there is no difference can be 
observed in the dynamic spectra from the successful run and 
coincidental run for fault led predicate. Let us take predicate P9 
and program run (test case) T4 to illustrate. During program 
run T4 even with the faulty value of x, predicate “P9: x>y” give 
the correct solution (i.e evaluate false). The fault is glossed 
over which leads the rest program except (from S13 to the end) 
to execute normal. Now the result in predicate P9 in the Test 
case T4, their dynamic spectra are same to T1 and T2 and 
different from T7 and T8. In balanced predicate thedynamic 
spectra are equally for coincidental run to those in the 
successful run and equally from failed runs. We can explain it 
as if the fault is exercised the faulty state may be 
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coincidentally not propagate and the program still behave as 
normal. That‟s why there is no difference can be observed in 
the dynamic spectra from the successful run and coincidental 
run for balanced predicate.Let us take predicate P8 and 
program run (test case) T4 to illustrate. During program run T4 
even with the faulty value of x, predicate “P8: x>y” give the 
correct solution (i.e evaluate false). The fault is glossed over 
which leads the rest program except (from S13 to the end) to 
execute normal. Now the result in predicate P10 in the Test 
case T4, their dynamic spectra are balanced to T1, T2, T3 and 
T4 but different from T5, T6, T7 and T8. Now with the help of 
overlapping of spectrum distribution in failed run and non failed 
run can be effective means to differentiate a fault leading 
predicate from the other. As we mentioned above that the 
dynamic spectra of predicate P4 in test case T4 are same to 
those in T7 and T8 and different from T2 and T3. So we record 
the overlapping 100 percent in T4, T5, T6, T7 and T8. The same 
mechanism is observed with the predicate P9, the dynamic 
spectra in T7 and T8 are not met in T4, T5, and T6 and record 
the overlapping 0 percent for it. Thus these caparison which 
shows the overlapping rule out the fault led predicate.  How 
does our model work in such types of cases? We will detail it 
in our model in the next section. 
 

3   OUR MODEL 
 
A   PROBLEM SETTING 
Let P be a faulty program with n predicate that are referred to 

as  p1 , p2 , p3 … . . pn  . Program run R is divided in two sets N 
and F where N={n1 , n2 , n3 … . . ny} for the y non failed runs and 

F={f1 , f2 , f3 … . . fv } for v failed runs. As we can see in our Figure 
2 N={T1,T2,T3,T4,T5,T6} and F={T7,T8}.  
 

Now we introduce the two term as eT (pj , ri) and eF (pj , ri) to 

measure the number of times a predicate pj  is evaluated as 

trueor false for the number of program runs ri respectively. 
 

B   PRELIMINARIES 
Before starting to elaborate our model we first introduce some 
preliminaries. Following previous studies [11] we use x(pj , ri) 

to show the evolution bias of predicate pj in a program run ri. 

Here an evolution bias is the probabilities of a predicate being 
evaluated true in a program run. It is calculated as- 

x 𝐩𝐣, 𝐫𝐢  =   
𝐞𝐓 (𝐩𝐣,𝐫𝐢)

𝐞𝐓  𝐩𝐣,𝐫𝐢 +𝐞𝐅 (𝐩𝐣,𝐫𝐢)
 

 

We also use the term x pj , fi  and x  pj , ni  to express the 

evaluation bias of predicate  pj  in both failed and non failed 

runs respectively. Further to denote the vector of evolution 

bias for each predicate in i
th
 failed run  fi , we have 

𝐗𝐢
𝐅= [x 𝐩𝟏, 𝐫𝐢 , x 𝐩𝟐, 𝐫𝐢 ………. x 𝐩𝐧, 𝐫𝐢 ] 

 

WhereXi
F  denote the vector of evaluation bias in the ith non 

failed run fi  . Similarly Xi
T  is denoted the vector of evolution 

bias in the ith non failed run ni . Now the overlapping of 
spectrum distribution in both failed and non failed run consider 
the similarity between two types of run. According to the 
evaluation bias which exists in both of them. In this paper to 
measure the overlapping, we introduce Bhattacharya 
coefficient [2]. This function is used to measure the 
overlapping amount between two statistical sample and 

population. Let pj and yj be the predicate and evaluation bias 

respectively and wF and wN  denotes failed runs and non failed 
runs respectively.Bhattacharya coefficient can be formulized 
as: 

BC (P (𝐲𝐣 𝐰𝐅) , (𝐲𝐣 𝐰𝐍)  =    (𝐏 (𝐲𝐣 𝐰𝐅) × (𝐲𝐣 𝐰𝐍) 𝐲𝐣∈𝐃𝐣
 

 

Where Di  is the domain of yj  and P(yj wF)  and P(yj wN)  are 

the coincidental probabilities of yj in the set of failed and non 

failed runs respectively. The probability of yj exists in both of 

the two kinds of runs which are P(yj wF) × P(yj wN)  . The 

measure is proved to be the upper bond of Bayes error which 

directly related to the overlapping of two model. We use σj
F v    

and  σj
N u  in this paper to approximate P(yj wF)  and P(yj wN)  

respectively. Where  
 

σj
F v is the kind of appearance of yj in the set of failed runs. 

σj
N u is the kind of appearance of yj  in the set of non failed 

runs. Now take the predicate p1 in our Fig-2 as an example 

and we can see that there exists only one variable y1 = 0 .So 
conditional probability are P(y1 wF)  and P(y1 wN)  are 1and 

BC (P(y1 wF) , (y1 wN)  = 1 
 

C   OUR TECHNIQUE 
Our technique consists of five steps. 
 
1 GATHERING DYNAMIC SPECTRA: 
Gathering dynamic spectra for all predicate in every test case 
and predicators are inserted in three kinds of statement i.e 
Branch statement, Scalar pair and Return statement. To 
capture the dynamic spectra we use evaluation bias. 
 
2   CALCULATING THE OVERLAPPING OF DYNAMIC SPECTRUM: 
In both neutral and fault leading predicate since their dynamic 
spectra for failed run and coincidental run are reassemble 
each other to great extent. So we use the spectrum distribution 
overlapping to differentiate them from fault led predicate. 
Bhattacharya distance [2] is used to calculate the spectrum 
distribution in case of failed and non failed run.(note: we 
cannot figure out the coincidental run from the non failed runs). 
Now we have given a predicate Pj to determine the 
overlapping of its spectrum distribution in failed run F and in 

non failed run N. The overlapping Oj  of the spectrum 

distribution in both failed and non failed runs can be explained 
in terms of Bhattacharya distance: 

𝐎𝐣 = -ln [BC (P(𝐲𝐣 𝐰𝐅) , (𝐲𝐣 𝐰𝐍)  ] 

 
Where BC (∙) is Bhattacharya coefficient.  
 
If BC (P (yj wF) , (yj wN)  = 0 we set Oj is to be+∞ . 

 
After this step we may record all the predicate in descending 
order by referencing their overlapping values. The top ranked 
predicate contains more fault leading predicate. However we 
also predict that after such a step the neutral predicate may 
mix with fault leading predicate as well as balanced predicate 
in the result. 
 
3   CALCULATING THE INTER AND INTRA CLASS DISTANCE: 
We notice in the previous result that neutral predicate will still 
mix up with the fault leading predicate. Let us discuss inter 
class distance [7] to show the solution. In the motivation 
example we have demonstrate the spectra in both fault leading 
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and fault led predicates in successful and  failed runs which 
are different from each other to a great extant. That‟s why we 
adopt to estimate the inter class distance to differentiate them 

from neutral predicate. The inter class distance  Bj  for a 

predicate Pj is calculated as:  

𝐁𝐣=  𝐦𝐣
𝐅 −𝐦𝐣

𝐍  

 

Where mj
F  and mj

N  denotes mean value of the evaluation bias 

for Pj in the failed and non failed test case respectively and mj
F  

and mj
Nare calculated as : 

𝐦𝐣
𝐅 = 

𝟏

𝐯
 [𝐱(𝐯

𝐢=𝟏 𝐩𝐣, 𝐟𝐢)] and  𝐦𝐣
𝐍 = 

𝟏

𝐮
 [𝐱(𝐮

𝐢=𝟏 𝐩𝐣,𝐧𝐢)] 

 
The inter class distance Bjmeasure the distance between the 

evaluation bias of predicate Pjin the set of both failed and non 
failed run respectively. In the motivation, we have explained 
that the inter class distance of neutral predicate is less than 
fault leading predicate and thus we can differentiate a neutral 
predicate from fault leading predicate.However we also realize 
that the spectrum distribution for two predicate may have 
unequal width, directly comparing their inter class distance 
may not be scientific. For example the predicate that installed 
for the branch statement of the long lops may have very small 
evaluation bias value3. So the inter class distance calculate for 
it can be much smaller than the average. Now if we want to 
fairly compare the inter class distance between two predicates, 
we introduce intra class distance. To normalize them before 

comparison. The intra class distance Dj for the predicate Pjis 

calculated as; 

𝐃𝐣 =  

 
 [𝐱(𝐯
𝐢=𝟏 𝐩𝐣,𝐟𝐢)−𝐦𝐣

𝐅]𝟐

𝐯
  + 

 [𝐱(𝐮
𝐢=𝟏 𝐩𝐣,𝐧𝐢)−𝐦𝐣

𝐧]𝟐

𝐮

𝟐
 

Similarly explained asBj . Note: it is the mean of intra class 

distance of Pjfor failed and non failed run. Now we can 

normalized the inter class distance Bj using the intra class 

distanceDj for each predicate so that their distance can be 

fairly compared to each other. The normalized inter class 
distance Ajfor pj is as follows: 

𝐀𝐣 =
𝐁𝐣

𝐃𝐣
 

When Dj=0 andBj is not 0 then Aj=∞. 

When Dj=0 andBj is also 0then Aj=0. 

 
This step decreases the rank of the neutral predicate without 
affecting the relative order of the fault leading predicate and 
fault led predicate. 
 

4   GENERATING A RANK LIST OF SUSPICIOUS 

PREDICATE: 
In previous step, we differentiate neutral predicate with fault 
leading predicate with the help of normalized inter class 

distanceAj. Now by integrating the suspiciousness formula Sj 

as: 

Sj= 𝟐(𝐎𝐣 −𝐀𝐣) 
 

Since with the great use of Oj we can rule out the fault led 

predicate and the use of Ajwe can suppress neutral 
predicates. We thus identify fault leading predicate and 
balanced predicate. At the same time since the normalized 
inter class distance for fault leading predicate is supposed to 
be comparable to that of fault led predicate is still reserved by 

the adjustment of “-Aj”. The base number 2 is to assure that 
Sj>0. Now finally rearrange the predicates in descending order 
of their suspiciousness score Sj and generate the rank list of 
predicates. 
 

5    COVERAGE MATRIX BASED REDUCTION (CMR) 
 
 5.1   EXECUTION PATH 
The execution path of a program P to be a sequence of 
statements that executes in a program P = <p1, p2,…, pi,…>. 
The P executed by test case t is denoted as PATH(t). 
 
 5.2   COVERAGE VECTOR 
The coverage vector (binary vector) of test case t is denoted 
as COVER(t), where COVER(t)=<s′1, s′2, s′3,…,s′n> (n is the 
number of statements of P). In the program the statements 
which are execute its value is „1‟ otherwise „0‟.  
 s′j=1,PATH(t) covered in j

th
 statement  

 or 0, PATH(t) uncovered in j
th
 statement 

 

 5.3   COVERAGE MATRIX 
Given a target program P, which consists of statements s1, s2, 
…sn Let T ={t1,t2,…,tm} be a test-suite for P, m be the number 
of test cases for 
P.COVER(T)=COVER(t1),COVER(t2)…COVER(tm)}. 
 
 5.4   WEEKLY IRRELEVANT STATEMENT 
The statements which are execute in all the test cases are 
called weakly irrelevant statement because these statement 
are not give any idea of fault localization that‟s why we remove 
those statement and create new vector which is known 
asRCOV(t). Let T ={t1,t2,…,tm} be a test-suite for program P, sk 
(1≤k≤n) be one of statements of P, COVER(T) be the 
statement coverage matrix of P. sk is a weekly relevant 
statement of P for the test-suite T, if and only if for all pairs of i 
and j (1≤i≤m; 1≤j≤m; i≠j), COVER(ti–sk)==COVER(tj–sk). 
COVER(ti–sk) is the k

th
element of COVER(ti). By comparing 

the statistical difference in passed and failed test cases we 
can measure the dubious score of each statement. Weekly 
irrelevant statement is executed by all the passed and failed 
test cases, so the dubious score of weakly relevant statements 
are relative small. The remaining coverage matrix which does 
not contain the weakly relevant statements is denoted as 
RCOV(T), the remaining coverage vector corresponding to test 
cases ti is denoted as RCOV(ti), and the remaining coverage 
vector corresponding to fault-localization requirements FLreq 
is denoted as RCOV(FLreq). 
 

 
 

Figure 3 
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5.5   FAULT LOCALIZATION REQUIREMENT VECTOR (FLREQ) 
The FLreq is obtained by analyzing the coverage vectors of all 
failed test cases. Let T={t1,t2,…tm}be a failed test-suite for P. 
The faulty statement should be executed by every failed test 
case for the localization of a single fault, so the statement 
executed by all the failed test cases should be included. FLreq 
= COVER(t1) ∩ COVER(t2) ∩… ∩ COVER(tm). By contrast, for 
the localization of multiple faults, the program should contain 
several faulty statements. One failed test case may not 
execute all of the faulty statements but one faulty statement 
should be executed by one or more failed test cases, so FLreq 

=COVER (t1) ∪ COVER (t2) ∪…∪COVER (tm).  

 
Figure 4 

 

 
 

Figure 5 
 

 
 
 

Figure 6 
 

4    EMPIRICAL EVALUATION 
The previous results proposed some effective fault localization 
approach and are used by many scholars for comparisons in 
their works. It calculates statements‟ suspiciousness according 
to the coverage information and execution results (success or 
failure) with respect to each test case. We applied our test suit 
to tarantula for evaluation of fault-localization effectiveness of 
our reduced test-suite. The key intuition of Tarantula is that 
statements in a program primarily executed by failed test 
cases are more likely to be faulty than those primarily 
executed by passed test cases. Suspiciousness of a statement 
s is calculated as follows:  

Suspiciousness(s) = 

𝐟𝐚𝐢𝐥𝐞𝐝(𝐬)

𝐭𝐨𝐭𝐚𝐥 𝐟𝐚𝐢𝐥𝐞𝐝(𝐬)

𝐩𝐚𝐬𝐬𝐞𝐝(𝐬)

𝐭𝐨𝐭𝐚𝐥 𝐩𝐚𝐬𝐬𝐞𝐝(𝐬)
+

𝐟𝐚𝐢𝐥𝐞𝐝(𝐬)

𝐭𝐨𝐭𝐚𝐥 𝐟𝐚𝐢𝐥𝐞𝐝(𝐬)

 

 

1    SUBJECT PROGRAMS 
In our experiment we use the dot net framework to create our 
experimental model as a tool for the subject program written in 
C to evaluate the effectiveness and efficiency of our method. 
We take the example of a program which is to find the mid 
value of three inputs in our fault localization. This program is 
having eight test cases for different types of inputs in each test 
cases. The program has numbers of statement and splits into 
four types of predicate as neutral, fault leading, fault led and 
balanced predicate.  
 
2    EXPERIMENTAL PROCESS 
Before applying our strategy we have done some checked test 
cases, whose result are passed or failed. The number of these 
passed or failed test cases can be arbitrary in practice. And 
then the fault localization requirement is obtained according to 
failed test cases. To evaluate the effect of coverage matrix 
based reduction and path vector based reduction on fault 
localization effectiveness, we design and implement two 
experiments as follow: 
 
Experiment-1(CMR+PVR):We use coverage matrix base 
reduction approach to delete the test case which are weekly 
relevant to fault localization requirements. Then we use path 
vector based reduction approach to improve the distribution 
evenness of execution path test cases. 
Experiment-2(PVR): For comparison, we only use path vector 
based reduction approach to get the reduce test-suite. 
 

3    EXPERIMENTAL RESULTS AND ANALYSIS  
As the result of the work is started to take a program and split 
it into the predicate based according to their execution of the 
statement. After that we differentiate the predicate in four parts 
with its faulty and non faulty statement. To differentiate the 
predicate we use the Bhattacharya coefficient from their 
spectrum distribution and then we separate the predicates 
from inter and intra class distance.The initial step of our model 
that elaborate how many number of test cases and how many 
number of fault cover has been entered. Now we perform the 
test cases reduction technique to reduce the test cases with 
the coverage matrix based structure to perform the AND 
operation among the failed test case and the result is then 
perform with the all passed test cases one by one. First of all 
entering the values in number of test cases and in number of 
fault cover and clicking Ok button to get a matrix form of the 
figure with its test case in rows and cover faults in its columns. 
  

 
 

Figure 8 
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In Figure 8, we give the number of test cases is 7 and the 
number of fault cover is 8, then clicking Ok button to get 
coverage matrix and fill all boxes with 0‟s and 1‟s according to 
their passed and failed statements and the last test case is 
fault localization requirement vector (FLreq) which is already 
the AND operation of failed test cases. 
 

5   RELATED WORK 
There is one of the most famous fault localization technique 
named as Tarantula [9]. In this technique there proportion of 
failed and passed execution exercising the statement to 
measure the dubious part of that statement. Naish et al [14] 
gave a summary for such technique. Now if we comparing 
such statement level technique, for locating a fault CBI [10] 
uses predicates as fault indicator. Which gain low complexity 
and high extensibility? Zhag et al. [21] empirically validate that 
the short circuiting has effect the predicate based technique 
and proposed DES [21] accordingly. They also used a non 
parametric predicate based statistical fault localization 
framework.For statistical fault localization there is a well-
known impact factor is coincidental correctness which causes 
program runs and trigger the fault, to be marked as non-failed 
runs. Test suite reduction is one of a solution [8][15] to address 
coincidental correctness or improve test suite quality [19], but 
its feasibility relies on the accuracy of recognizing coincidental 
cases [13]. Our paper proposes a methodology to address 
coincidental correctness, which does not rely on the accuracy 
of recognizing them. In this paper, Bhattacharyya coefficient is 
used to measure the similarity of the predicate spectra 
between failed runs and non-failed runs, to rule out the fault-
led predicates. After that inter and intra-class distances are 
often used in pattern recognition to measure the class 
difference [16,17].  
 

6    CONCLUSION  
In this paper we have presented a technique for calculating the 
fault localization, which is used to locate the fault in a faulty 
program and give useful solutions for optimization. The 
program is divided into four types predicates named as Neutral 
Predicate, Fault Leading Predicate, Fault led Predicate and 
Balanced Predicate by dynamic spectra. These predicate are 
distinguish by their dynamic spectra with inter class distance. 
The program are executed statement wise in every test cases 
(T1, T2, T3, T4, T5, T6, T7,T8) and prepare a coverage matrix by 
their pass and failed test cases in binary form 0‟s and 1‟s. We 
calculate the fault localization requirement vector (FLreq) by 
performing AND operation of failed test cases and then 
performs AND operation between FLreq with each passed test 
cases to get the weekly irrelevant statement (0000000 or 
111111). At the end we reduce the test cases (T1, T2, T5, T7, T8) 
where T7 and T8 are already failed test cases and faulty so we 
get (T1, T2, T5) as reduce test case. 
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