
INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 4, ISSUE 10, OCTOBER 2015 ISSN 2277-8616

380
IJSTR©2015

www.ijstr.org

 Rohit Mishra Department of Computer Science &

Information Technology,S.H.I.A.T.S, Nainy Allahabad
Uttar Pradesh India 211007

 Dr. Raghav Yadav Department of Computer Science &
Information Technology, S.H.I.A.T.S, Nainy Allahabad
Uttar Pradesh India 211007. E-mail:
rohit.online89@gmail.com, E-mail:
raghav.yadav@shiats.edu.in

A Predicate Based Fault Localization Technique
Based On Test Case Reduction

Rohit Mishra, Dr.Raghav Yadav

ABSTRACT: In today‟s world, software testing with statistical fault localization technique is one of most tedious, expensive and time consuming acti vity.
In faulty program, a program element contrast dynamic spectra that estimate location of fault. There may have negative impact from coincidental
correctness with these technique because in non failed run the fault can also be triggered out and if so, disturb the assessment of fault location. Now

eliminating of confounding rules on the recognizing the accuracy. In this paper coincidental correctness which is an effective interface is the reason of
success of fault location. We can find out fault predicates by distribution overlapping of dynamic spectrum in failed runs and non failed runs and slacken
the area by referencing the inter class distances of spectra to clamp the less suspicious candidate. After that we apply coverage matrix base reduction

approach to reduce the test cases of that program and locate the fault in that program. Finally, empirical result shows that our technique outshine with
previous existing predicate based fault localization technique with test case reduction.

Keywords: Fault Localization, Predicates, Dynamic Spectrum, Coincidental correctness, Class distribution, Coverage base matrix

1 INTRODUCTION
TODAY‟S software and system of software are going to be
more complicated. The quality of software is becoming more
important and effective mechanism for academia and
industries. The failed program is the reason for fault existing in
a program. Now to overcome from this, the programmer fixes
a program fault and locates it first. There are several fault
localization technique exist.

Figure 1

Although the statistic fault localization (SFL) technique is

reported successful and its effectiveness to figure out faults
areunavoidable influenced by the behavior of input data. There
is a phenomenon referred to as coincidental correctness
thatreflects, no failure is detected even though the fault has
been exercised [18]. The part of non failed runs that
coincidentally manifest no abnormal behavior may have a
negative effect on the accuracy ofSFL technique because their
profile is closer to those of the failed runs. There is the straight
idea to discriminate the coincidental correctness runs and
remove them from input[6,12]. However the discriminate of
coincidental correctness may give feasibility and effectiveness.
The advance experiment gave the pessimistic report that the
false negative related to the discrimination of coincidental
correctness runs is above 50% for one of the three experiment
subject[13]. Now the challenging and interesting question is
arise that can we allow the presence or existing of coincidental
correctness and figure out a fault with the presence of it. The
test suit reduction technique is overcome of it with coverage
base matrix (program without loop) and path vector base
reduction (program with loop). In this paper we examine the
nature and behavior of dynamic spectra for different program
predicates with the existence of coincidental correctness and
propose a technique to find out the most fault relevant
predicates. We emphasis it with two step. In our first step,
seize the dynamic spectra of program predicate in case of
both failed and non failed runs respectively. Then we move on
to the concept of calculating overlapping of the spectrum
distribution in both the cases i.e failed and non failed runs to
find out the predicates whose existing lead to the triggering of
a fault. Next we slacken the region by calculating the inter
class distance for the spectra in two bodies(failed and non
failed) to clamp interested less dubious predicates. In the
second step we maintain the coverage matrix of that program
with its failed and passed statement respectively. Now with the
help of referencing their calculated dubious we can sort the
test cases by applying AND operation with every failed
statement and then find the fault localization requirement
vector (FLreq) and find the reduce test case. Experiment
shows that our technique

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 4, ISSUE 10, OCTOBER 2015 ISSN 2277-8616

381
IJSTR©2015

www.ijstr.org

Figure 2

outshine some representative existing predicate based SFL
technique. Our paper is mannered as follows: In first section
we propose a technique that estimates fault localization with
the presence of coincidental correctness. It is requisite to be
more accurate since there is no longer a need to discriminate
the coincidental correctness runs.In second section of this
paper we present our motivation and research aim.Section
third elaborates our model to the related work. Section four
gives the experimental evolution andmeasurement of the
paper.Section five gives the related work.And finally we
conclude our paper on section six.

2 MOTIVATION

2.1 THE SAMPLE PROGRAM
There is the example in Figure 2 shows a piece of code to find
out the mid value among three inputs. A fault is seeds in the
statement S7 which may be a reason of the program to
generate an incorrect output. We take three integer as an input
to begin the program and permute them to create eight test
cases named as; T1, T2, T3, T4 ,T5,T6, T7, T8. We notices that
the test cases from T4, T5and T6exercised the faulty statement
but only T7 and T8 give unexpected output. Thus we noted
down test case T7 and T8 as failed runs and other execution as
non fails runs. To make our discussion easier we introduce the
word coincidental run, to name the program execution over T4,
T5 and T6where the fault is figured but no state is figured as
faulty observable. To differentiate from them we introduce the
term successful runs to name the program runs over T1, T2and
T3. Now we are going to install 12 predicate in the program
named as P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12 in
above Figure 2. We also consider their dynamic spectrum in
the form of x:y in the program which indicate the number of
times the predicate is evaluated as true and evaluated as false
respectively. Let us take first row to illustrate. In the test case
of T1 predicate “P1: x=a” is evaluated false (0) ones and never
evaluated true. Thus we calculate dynamic spectra of
predicate p1 as “0:1”in that run

2.2 INSPIRING OUR WORK
As there is no loop in the program and it is execute
sequentially, we introduce four categories of predicates named
as: Neutral, Fault leading, Fault led and Balanced predicate

Now the twelve predicate are partitioned into group in which
P1, P2 and P3 is neutral predicate P4, P5 and P6 fault leading
predicate P7,P8and P9 is balanced predicate and P10, P11 and
P12 is fault led predicates. Here we notice that predicate P4

most fault relevant predicate is fault leading predicate with
such classification. In neutral predicate its dynamic spectra in
every run resemble each other. We can understood as that
there are very less chances to make relationship with fault so
that their behavior makes less difference in every runs either it
is a failed runs or non failed runs. If we can take the predicate
P1 in the test case T4 to illustrate predicate “P1: x= =a” lies on
the first statement and always evaluate false and its spectra in
all the runs are equal. For a fault leading predicates there is a
difference in its dynamic spectra in coincidental runs (the non
failed in coincidental correctness happening) are identical to
those in run but different from those in successful runs (the
non failed without coincidental correctness happening). We
use the symbol “≠” and “≈” in Figure 2 to make a better view.
We can elaborate is as, the execution paths leading to a fault
often concentrate into small clusters as reported in [6]. That‟s
why this predicate may revealed the similar dynamic spectra in
both coincidental runs and failed runs. Let us take predicate
P4 and test case T4 to illustrate. Predicate “P4: x<y” give false
which skip the statement S5 to triggers the false the statement
S7. This is the only legal way that leads the fault and for
predicate p4 in test case T4, their dynamic spectra are same to
those in T7 and T8 and different from T1, T2 and T3. In fault led
predicate the dynamic spectra are identical for coincidental run
to those in the successful run and different from failed runs.
We can elaborate it as if the fault is exercised the faulty state
may be coincidentally not propagate and the led program still
behave as normal. That‟s why there is no difference can be
observed in the dynamic spectra from the successful run and
coincidental run for fault led predicate. Let us take predicate P9
and program run (test case) T4 to illustrate. During program
run T4 even with the faulty value of x, predicate “P9: x>y” give
the correct solution (i.e evaluate false). The fault is glossed
over which leads the rest program except (from S13 to the end)
to execute normal. Now the result in predicate P9 in the Test
case T4, their dynamic spectra are same to T1 and T2 and
different from T7 and T8. In balanced predicate thedynamic
spectra are equally for coincidental run to those in the
successful run and equally from failed runs. We can explain it
as if the fault is exercised the faulty state may be

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 4, ISSUE 10, OCTOBER 2015 ISSN 2277-8616

382
IJSTR©2015

www.ijstr.org

coincidentally not propagate and the program still behave as
normal. That‟s why there is no difference can be observed in
the dynamic spectra from the successful run and coincidental
run for balanced predicate.Let us take predicate P8 and
program run (test case) T4 to illustrate. During program run T4
even with the faulty value of x, predicate “P8: x>y” give the
correct solution (i.e evaluate false). The fault is glossed over
which leads the rest program except (from S13 to the end) to
execute normal. Now the result in predicate P10 in the Test
case T4, their dynamic spectra are balanced to T1, T2, T3 and
T4 but different from T5, T6, T7 and T8. Now with the help of
overlapping of spectrum distribution in failed run and non failed
run can be effective means to differentiate a fault leading
predicate from the other. As we mentioned above that the
dynamic spectra of predicate P4 in test case T4 are same to
those in T7 and T8 and different from T2 and T3. So we record
the overlapping 100 percent in T4, T5, T6, T7 and T8. The same
mechanism is observed with the predicate P9, the dynamic
spectra in T7 and T8 are not met in T4, T5, and T6 and record
the overlapping 0 percent for it. Thus these caparison which
shows the overlapping rule out the fault led predicate. How
does our model work in such types of cases? We will detail it
in our model in the next section.

3 OUR MODEL

A PROBLEM SETTING
Let P be a faulty program with n predicate that are referred to

as p1 , p2 , p3 … . . pn . Program run R is divided in two sets N
and F where N={n1 , n2 , n3 … . . ny} for the y non failed runs and

F={f1 , f2 , f3 … . . fv } for v failed runs. As we can see in our Figure
2 N={T1,T2,T3,T4,T5,T6} and F={T7,T8}.

Now we introduce the two term as eT (pj , ri) and eF (pj , ri) to

measure the number of times a predicate pj is evaluated as

trueor false for the number of program runs ri respectively.

B PRELIMINARIES
Before starting to elaborate our model we first introduce some
preliminaries. Following previous studies [11] we use x(pj , ri)

to show the evolution bias of predicate pj in a program run ri.

Here an evolution bias is the probabilities of a predicate being
evaluated true in a program run. It is calculated as-

x 𝐩𝐣, 𝐫𝐢 =
𝐞𝐓 (𝐩𝐣,𝐫𝐢)

𝐞𝐓 𝐩𝐣,𝐫𝐢 +𝐞𝐅 (𝐩𝐣,𝐫𝐢)

We also use the term x pj , fi and x pj , ni to express the

evaluation bias of predicate pj in both failed and non failed

runs respectively. Further to denote the vector of evolution

bias for each predicate in i
th
 failed run fi , we have

𝐗𝐢
𝐅= [x 𝐩𝟏, 𝐫𝐢 , x 𝐩𝟐, 𝐫𝐢 ………. x 𝐩𝐧, 𝐫𝐢]

WhereXi
F denote the vector of evaluation bias in the ith non

failed run fi . Similarly Xi
T is denoted the vector of evolution

bias in the ith non failed run ni . Now the overlapping of
spectrum distribution in both failed and non failed run consider
the similarity between two types of run. According to the
evaluation bias which exists in both of them. In this paper to
measure the overlapping, we introduce Bhattacharya
coefficient [2]. This function is used to measure the
overlapping amount between two statistical sample and

population. Let pj and yj be the predicate and evaluation bias

respectively and wF and wN denotes failed runs and non failed
runs respectively.Bhattacharya coefficient can be formulized
as:

BC (P (𝐲𝐣 𝐰𝐅) , (𝐲𝐣 𝐰𝐍) = (𝐏 (𝐲𝐣 𝐰𝐅) × (𝐲𝐣 𝐰𝐍) 𝐲𝐣∈𝐃𝐣

Where Di is the domain of yj and P(yj wF) and P(yj wN) are

the coincidental probabilities of yj in the set of failed and non

failed runs respectively. The probability of yj exists in both of

the two kinds of runs which are P(yj wF) × P(yj wN) . The

measure is proved to be the upper bond of Bayes error which

directly related to the overlapping of two model. We use σj
F v

and σj
N u in this paper to approximate P(yj wF) and P(yj wN)

respectively. Where

σj
F v is the kind of appearance of yj in the set of failed runs.

σj
N u is the kind of appearance of yj in the set of non failed

runs. Now take the predicate p1 in our Fig-2 as an example

and we can see that there exists only one variable y1 = 0 .So
conditional probability are P(y1 wF) and P(y1 wN) are 1and

BC (P(y1 wF) , (y1 wN) = 1

C OUR TECHNIQUE
Our technique consists of five steps.

1 GATHERING DYNAMIC SPECTRA:
Gathering dynamic spectra for all predicate in every test case
and predicators are inserted in three kinds of statement i.e
Branch statement, Scalar pair and Return statement. To
capture the dynamic spectra we use evaluation bias.

2 CALCULATING THE OVERLAPPING OF DYNAMIC SPECTRUM:
In both neutral and fault leading predicate since their dynamic
spectra for failed run and coincidental run are reassemble
each other to great extent. So we use the spectrum distribution
overlapping to differentiate them from fault led predicate.
Bhattacharya distance [2] is used to calculate the spectrum
distribution in case of failed and non failed run.(note: we
cannot figure out the coincidental run from the non failed runs).
Now we have given a predicate Pj to determine the
overlapping of its spectrum distribution in failed run F and in

non failed run N. The overlapping Oj of the spectrum

distribution in both failed and non failed runs can be explained
in terms of Bhattacharya distance:

𝐎𝐣 = -ln [BC (P(𝐲𝐣 𝐰𝐅) , (𝐲𝐣 𝐰𝐍)]

Where BC (∙) is Bhattacharya coefficient.

If BC (P (yj wF) , (yj wN) = 0 we set Oj is to be+∞ .

After this step we may record all the predicate in descending
order by referencing their overlapping values. The top ranked
predicate contains more fault leading predicate. However we
also predict that after such a step the neutral predicate may
mix with fault leading predicate as well as balanced predicate
in the result.

3 CALCULATING THE INTER AND INTRA CLASS DISTANCE:
We notice in the previous result that neutral predicate will still
mix up with the fault leading predicate. Let us discuss inter
class distance [7] to show the solution. In the motivation
example we have demonstrate the spectra in both fault leading

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 4, ISSUE 10, OCTOBER 2015 ISSN 2277-8616

383
IJSTR©2015

www.ijstr.org

and fault led predicates in successful and failed runs which
are different from each other to a great extant. That‟s why we
adopt to estimate the inter class distance to differentiate them

from neutral predicate. The inter class distance Bj for a

predicate Pj is calculated as:

𝐁𝐣= 𝐦𝐣
𝐅 −𝐦𝐣

𝐍

Where mj
F and mj

N denotes mean value of the evaluation bias

for Pj in the failed and non failed test case respectively and mj
F

and mj
Nare calculated as :

𝐦𝐣
𝐅 =

𝟏

𝐯
 [𝐱(𝐯

𝐢=𝟏 𝐩𝐣, 𝐟𝐢)] and 𝐦𝐣
𝐍 =

𝟏

𝐮
 [𝐱(𝐮

𝐢=𝟏 𝐩𝐣,𝐧𝐢)]

The inter class distance Bjmeasure the distance between the

evaluation bias of predicate Pjin the set of both failed and non
failed run respectively. In the motivation, we have explained
that the inter class distance of neutral predicate is less than
fault leading predicate and thus we can differentiate a neutral
predicate from fault leading predicate.However we also realize
that the spectrum distribution for two predicate may have
unequal width, directly comparing their inter class distance
may not be scientific. For example the predicate that installed
for the branch statement of the long lops may have very small
evaluation bias value3. So the inter class distance calculate for
it can be much smaller than the average. Now if we want to
fairly compare the inter class distance between two predicates,
we introduce intra class distance. To normalize them before

comparison. The intra class distance Dj for the predicate Pjis

calculated as;

𝐃𝐣 =

 [𝐱(𝐯
𝐢=𝟏 𝐩𝐣,𝐟𝐢)−𝐦𝐣

𝐅]𝟐

𝐯
 +

 [𝐱(𝐮
𝐢=𝟏 𝐩𝐣,𝐧𝐢)−𝐦𝐣

𝐧]𝟐

𝐮

𝟐

Similarly explained asBj . Note: it is the mean of intra class

distance of Pjfor failed and non failed run. Now we can

normalized the inter class distance Bj using the intra class

distanceDj for each predicate so that their distance can be

fairly compared to each other. The normalized inter class
distance Ajfor pj is as follows:

𝐀𝐣 =
𝐁𝐣

𝐃𝐣

When Dj=0 andBj is not 0 then Aj=∞.

When Dj=0 andBj is also 0then Aj=0.

This step decreases the rank of the neutral predicate without
affecting the relative order of the fault leading predicate and
fault led predicate.

4 GENERATING A RANK LIST OF SUSPICIOUS

PREDICATE:
In previous step, we differentiate neutral predicate with fault
leading predicate with the help of normalized inter class

distanceAj. Now by integrating the suspiciousness formula Sj

as:

Sj= 𝟐(𝐎𝐣 −𝐀𝐣)

Since with the great use of Oj we can rule out the fault led

predicate and the use of Ajwe can suppress neutral
predicates. We thus identify fault leading predicate and
balanced predicate. At the same time since the normalized
inter class distance for fault leading predicate is supposed to
be comparable to that of fault led predicate is still reserved by

the adjustment of “-Aj”. The base number 2 is to assure that
Sj>0. Now finally rearrange the predicates in descending order
of their suspiciousness score Sj and generate the rank list of
predicates.

5 COVERAGE MATRIX BASED REDUCTION (CMR)

 5.1 EXECUTION PATH
The execution path of a program P to be a sequence of
statements that executes in a program P = <p1, p2,…, pi,…>.
The P executed by test case t is denoted as PATH(t).

 5.2 COVERAGE VECTOR
The coverage vector (binary vector) of test case t is denoted
as COVER(t), where COVER(t)=<s′1, s′2, s′3,…,s′n> (n is the
number of statements of P). In the program the statements
which are execute its value is „1‟ otherwise „0‟.
 s′j=1,PATH(t) covered in j

th
 statement

 or 0, PATH(t) uncovered in j
th
 statement

 5.3 COVERAGE MATRIX
Given a target program P, which consists of statements s1, s2,
…sn Let T ={t1,t2,…,tm} be a test-suite for P, m be the number
of test cases for
P.COVER(T)=COVER(t1),COVER(t2)…COVER(tm)}.

 5.4 WEEKLY IRRELEVANT STATEMENT
The statements which are execute in all the test cases are
called weakly irrelevant statement because these statement
are not give any idea of fault localization that‟s why we remove
those statement and create new vector which is known
asRCOV(t). Let T ={t1,t2,…,tm} be a test-suite for program P, sk
(1≤k≤n) be one of statements of P, COVER(T) be the
statement coverage matrix of P. sk is a weekly relevant
statement of P for the test-suite T, if and only if for all pairs of i
and j (1≤i≤m; 1≤j≤m; i≠j), COVER(ti–sk)==COVER(tj–sk).
COVER(ti–sk) is the k

th
element of COVER(ti). By comparing

the statistical difference in passed and failed test cases we
can measure the dubious score of each statement. Weekly
irrelevant statement is executed by all the passed and failed
test cases, so the dubious score of weakly relevant statements
are relative small. The remaining coverage matrix which does
not contain the weakly relevant statements is denoted as
RCOV(T), the remaining coverage vector corresponding to test
cases ti is denoted as RCOV(ti), and the remaining coverage
vector corresponding to fault-localization requirements FLreq
is denoted as RCOV(FLreq).

Figure 3

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 4, ISSUE 10, OCTOBER 2015 ISSN 2277-8616

384
IJSTR©2015

www.ijstr.org

5.5 FAULT LOCALIZATION REQUIREMENT VECTOR (FLREQ)
The FLreq is obtained by analyzing the coverage vectors of all
failed test cases. Let T={t1,t2,…tm}be a failed test-suite for P.
The faulty statement should be executed by every failed test
case for the localization of a single fault, so the statement
executed by all the failed test cases should be included. FLreq
= COVER(t1) ∩ COVER(t2) ∩… ∩ COVER(tm). By contrast, for
the localization of multiple faults, the program should contain
several faulty statements. One failed test case may not
execute all of the faulty statements but one faulty statement
should be executed by one or more failed test cases, so FLreq

=COVER (t1) ∪ COVER (t2) ∪…∪COVER (tm).

Figure 4

Figure 5

Figure 6

4 EMPIRICAL EVALUATION
The previous results proposed some effective fault localization
approach and are used by many scholars for comparisons in
their works. It calculates statements‟ suspiciousness according
to the coverage information and execution results (success or
failure) with respect to each test case. We applied our test suit
to tarantula for evaluation of fault-localization effectiveness of
our reduced test-suite. The key intuition of Tarantula is that
statements in a program primarily executed by failed test
cases are more likely to be faulty than those primarily
executed by passed test cases. Suspiciousness of a statement
s is calculated as follows:

Suspiciousness(s) =

𝐟𝐚𝐢𝐥𝐞𝐝(𝐬)

𝐭𝐨𝐭𝐚𝐥 𝐟𝐚𝐢𝐥𝐞𝐝(𝐬)

𝐩𝐚𝐬𝐬𝐞𝐝(𝐬)

𝐭𝐨𝐭𝐚𝐥 𝐩𝐚𝐬𝐬𝐞𝐝(𝐬)
+

𝐟𝐚𝐢𝐥𝐞𝐝(𝐬)

𝐭𝐨𝐭𝐚𝐥 𝐟𝐚𝐢𝐥𝐞𝐝(𝐬)

1 SUBJECT PROGRAMS
In our experiment we use the dot net framework to create our
experimental model as a tool for the subject program written in
C to evaluate the effectiveness and efficiency of our method.
We take the example of a program which is to find the mid
value of three inputs in our fault localization. This program is
having eight test cases for different types of inputs in each test
cases. The program has numbers of statement and splits into
four types of predicate as neutral, fault leading, fault led and
balanced predicate.

2 EXPERIMENTAL PROCESS
Before applying our strategy we have done some checked test
cases, whose result are passed or failed. The number of these
passed or failed test cases can be arbitrary in practice. And
then the fault localization requirement is obtained according to
failed test cases. To evaluate the effect of coverage matrix
based reduction and path vector based reduction on fault
localization effectiveness, we design and implement two
experiments as follow:

Experiment-1(CMR+PVR):We use coverage matrix base
reduction approach to delete the test case which are weekly
relevant to fault localization requirements. Then we use path
vector based reduction approach to improve the distribution
evenness of execution path test cases.
Experiment-2(PVR): For comparison, we only use path vector
based reduction approach to get the reduce test-suite.

3 EXPERIMENTAL RESULTS AND ANALYSIS
As the result of the work is started to take a program and split
it into the predicate based according to their execution of the
statement. After that we differentiate the predicate in four parts
with its faulty and non faulty statement. To differentiate the
predicate we use the Bhattacharya coefficient from their
spectrum distribution and then we separate the predicates
from inter and intra class distance.The initial step of our model
that elaborate how many number of test cases and how many
number of fault cover has been entered. Now we perform the
test cases reduction technique to reduce the test cases with
the coverage matrix based structure to perform the AND
operation among the failed test case and the result is then
perform with the all passed test cases one by one. First of all
entering the values in number of test cases and in number of
fault cover and clicking Ok button to get a matrix form of the
figure with its test case in rows and cover faults in its columns.

Figure 8

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 4, ISSUE 10, OCTOBER 2015 ISSN 2277-8616

385
IJSTR©2015

www.ijstr.org

In Figure 8, we give the number of test cases is 7 and the
number of fault cover is 8, then clicking Ok button to get
coverage matrix and fill all boxes with 0‟s and 1‟s according to
their passed and failed statements and the last test case is
fault localization requirement vector (FLreq) which is already
the AND operation of failed test cases.

5 RELATED WORK
There is one of the most famous fault localization technique
named as Tarantula [9]. In this technique there proportion of
failed and passed execution exercising the statement to
measure the dubious part of that statement. Naish et al [14]
gave a summary for such technique. Now if we comparing
such statement level technique, for locating a fault CBI [10]
uses predicates as fault indicator. Which gain low complexity
and high extensibility? Zhag et al. [21] empirically validate that
the short circuiting has effect the predicate based technique
and proposed DES [21] accordingly. They also used a non
parametric predicate based statistical fault localization
framework.For statistical fault localization there is a well-
known impact factor is coincidental correctness which causes
program runs and trigger the fault, to be marked as non-failed
runs. Test suite reduction is one of a solution [8][15] to address
coincidental correctness or improve test suite quality [19], but
its feasibility relies on the accuracy of recognizing coincidental
cases [13]. Our paper proposes a methodology to address
coincidental correctness, which does not rely on the accuracy
of recognizing them. In this paper, Bhattacharyya coefficient is
used to measure the similarity of the predicate spectra
between failed runs and non-failed runs, to rule out the fault-
led predicates. After that inter and intra-class distances are
often used in pattern recognition to measure the class
difference [16,17].

6 CONCLUSION
In this paper we have presented a technique for calculating the
fault localization, which is used to locate the fault in a faulty
program and give useful solutions for optimization. The
program is divided into four types predicates named as Neutral
Predicate, Fault Leading Predicate, Fault led Predicate and
Balanced Predicate by dynamic spectra. These predicate are
distinguish by their dynamic spectra with inter class distance.
The program are executed statement wise in every test cases
(T1, T2, T3, T4, T5, T6, T7,T8) and prepare a coverage matrix by
their pass and failed test cases in binary form 0‟s and 1‟s. We
calculate the fault localization requirement vector (FLreq) by
performing AND operation of failed test cases and then
performs AND operation between FLreq with each passed test
cases to get the weekly irrelevant statement (0000000 or
111111). At the end we reduce the test cases (T1, T2, T5, T7, T8)
where T7 and T8 are already failed test cases and faulty so we
get (T1, T2, T5) as reduce test case.

REFERENCES
[1] P. Arumuga Nainar, T. Chen, J. Rosin, and B. Liblit,

Statistical debugging using compound Boolean
predicates, Proc. ISSTA ,pp. 5-15, 2007.

[2] Bhattacharyya. On a measure of divergence between
two statistical populations defined by probability
distributions. Bulletin of the Calcutta Mathematical
Society,

[3] T.M. Chilimbi, B. Liblit, K. Mehra, A.V. Nori, and K.

Vaswani, HOLMES: effective statistical debugging via

efficient path profiling, Proc. ICSE, pp. 34-44, 2009.

[4] W. Dickinson, D. Leon, and A. Podgurski. Pursuing

failure: the distribution of program failures in a profile

space. Proc. ESEC/FSE, pp. 246-255, 2001.

[5] H. Do, S. G. Elbaum, and G. Rothermel, Supporting

controlled experimentation with testing techniques: an

infrastructure and its potential impact,

Experimentation in Software Engineering, vol. 10(4),

pp. 405-435, 2005.

[6] R. Gore, and P. F. Reynolds. Reducing confounding

bias in predicate-level statistical debugging metrics,

Proc. ICSE, pp. 463-473, 2012.

[7] Y. Guan, H. Wang. Set-valued information systems.

Information Sciences, vol. 176(17), pp. 2507-2525,

2006.

[8] D. Hao, Y. Pan, L. Zhang, W. Zhao, H. Mei and J.

Sun, A similarity-aware approach to testing based

fault localization, Proc. ASE, pp. 291-294, 2005.

[9] J.A. Jones and M.J. Harrold, Empirical evaluation of

the Tarantula automatic fault-localization technique,

Proc. ASE, pp. 273-282, 2005.

[10] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M.I.

Jordan, Scalable statistical bug isolation, Proc. PLDI,

pp. 15-26, 2005.

[11] C. Liu, L. Fei, X. Yan, S. P. Midkiff, and J. Han,

Statistical debugging: a hypothesis testing-based

approach, IEEE TSE, vol. 32(10), pp. 831-848, 2006.

[12] W. Masri and R. A. Assi. Cleansing test suites from

coincidental correctness to enhance fault-localization,

Proc. ICST, pp. 165-174, 2010.

[13] Y. Miao, Z. Chen, S. Li, Z. Zhao, and Y. Zhou,

Identifying coincidental correctness for fault

localization by clustering test cases, Proc. SEKE, pp.

262-272, 2012.

[14] L. Naish, H.J. Lee, and K. Ramamohanarao, A model

for spectra-based software diagnosis, ACM TOSEM,

vol. 20(3):11, 2011.

[15] R. Santelices, J.A. Jones, Y. Yu, and M.J. Harrold,

Lightweight fault-localization using multiple coverage

types, Proc. ICSE, pp. 56-66, 2009.

[16] S. Theodoridis, K. Koutroumbas. Pattern Recognition.

Academic Press, New York, 4th. 2009.

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 4, ISSUE 10, OCTOBER 2015 ISSN 2277-8616

386
IJSTR©2015

www.ijstr.org

[17] L. Wang, Feature selection with kernel class

separability, IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 30(9), pp. 1534-1546,

2008.

[18] X. Wang, S. C. Cheung, W. K. Chan, and Z. Zhang.

Taming coincidental correctness: Coverage

refinement with context patterns to improve fault

localization. Proc. ICSE, pp. 45-55, 2009.

[19] Y. Yu, J. A. Jones, and M.J. Harrold, An empirical

study of the effects of test-suite reduction on fault

localization, Proc. ICSE, pp. 201-210, 2008.

[20] Z. Zhang, W.K. Chan, T.H. Tse, B. Jiang, and X.

Wang, Capturing propagation of infected program

states, Proc. ESEC/FSE, pp.43-52, 2009 .

[21] Z. Zhang, B. Jiang, W. K. Chan, T. H. Tse, and X.

Wang, Fault localization through evaluation

sequences, Journal of Systems and Software, vol.

84(6), 2010.

[22] Heng Li, Yuzhen Liu (2014) “Program Structure
Aware Fault LocalizationState Key Laboratory of
Computer Science Institute of Software, Chinese
Academy of Sciences Beijing 100190, ChinaNorth
China Electric PowerUniversity Beijing 100190, China

[23] Gong Dandan, WangTiantian ,SuXiaohong, MaPeijun
(2014) “A test-suite reduction approach to improving
fault-localization effectiveness” School of Computer
Science and Technology, Harbin Institute of
Technology, Harbin 150001, China

[24] Heng Li, Yuzhen Liu, Zhenyu Zhang, Jian Liu (2014)
“Program Structure Aware Fault Localization” State
Key Laboratory of Computer Science Institute of
Software, Chinese Academy of Sciences Beijing
100190, China

[25] Jifeng Xuan, Martin Monperrus (2014) “Test Case
Purification for Improving Fault Localization”
University of Lille & INRIA Lille, France

